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Executive Summary: 
 
This document presents the accumulated research results of the ARL JFACC Program. We 
have developed a theory that models Command and Control (C2) as control systems.  
 
We have designed, implemented and tested algorithms in the continuous domain to search 
for and attack targets, and to find and escort damaged friendly aircraft back to base. The 
domain of discrete event control is relatively new, and we have achieved breakthroughs in 
three areas. The first is in measuring the formal languages of discrete variables. The 
second is in measuring the performance of the controller in terms of Robustness and 
Permissiveness and the third is in the abstraction of formal languages using modified 
Shannon entropy.  
 
Our research has resulted in tools for building and testing controllers, and a test-bed for 
measuring the performance of control systems performing C2 under simulated battlefield 
conditions. The experiments were planned around the design and evaluation of discrete 
event control hierarchies of one, two and three layers. Within each set, experiments 
measured the performance as a function of the experimental variables in the battlefield 
simulator. 
 
The results provide evidence that C2 policies can be implemented as control systems and 
that hierarchical control systems can shield commanders from information overload. 
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JFACC - AC2C Experiment Plan and Results 
 

 
1. Background 
 
The goal of the DARPA JFACC program is to extend control theory, and the use of the feedback 
control loop, into all levels of air campaign planning and execution. This will change current C2 
practice by merging planning and execution into one integrated system. 
 
The Applied Research Laboratory of the Pennsylvania State University has developed a 
framework of interacting C2 agents and their associated intelligent controllers to implement this 
concept. The physical battle-space, or a simulation thereof, forms the plant on which the 
controllers act. 
 
The air campaign planning and execution process has been modeled as a hierarchical network of 
finite state automata (FSAs). Modularity allows the hierarchy to be changed dynamically to 
express reconfiguration of a proposed campaign. Transformations on the FSA network 
dynamically produce C2 hierarchies as the campaign evolves. Intelligent discrete event controllers 
use the FSAs to suggest appropriate actions for friendly campaign participants. 
 
Adaptive Command and Control Coalitions (AC2Cs) are consistent with the JFACC goal to 
catalyze a revolutionary change in military C2 through the agile and stable control of distributed 
and dynamic military operations conducted in an uncertain and rapidly changing environment. Our 
approach establishes an interacting hierarchy of controllers and “tactical” intelligence algorithms 
that integrates planning and execution of air campaigns. It supports the JFACC goal in the 
following ways: 

 
• The stability of each controller can be shown analytically.   
• A relatively high degree of local autonomy allows a quick response to any event.  
• Feedback is present at all levels of campaign C2 to coordinate individual platforms and 

ensure the achievement of overall mission goals.   
• The use of adaptive coalitions allows the C2 to adapt to changes in the environment. 
 

Air campaign planning is a challenging problem, based on coordinating multiple entities with 
complex interactions and dependencies. This requires experiments at multiple levels of control. 
Experiments and testing require running war game simulations at all levels of mission planning 
and execution. 
 
The experiments will be based on a corridor-clearing scenario.  This is a simple scenario. Assault 
corridors are defined containing enemy SAM’s.  SAM’s are both mobile and fixed. Friendly forces 
will send a set of Wild Weasel aircraft to find and destroy the SAM's.  All enemy air defenses 
within the corridor are to be disabled for the length of the mission.  
We will investigate the effects of variations and uncertainty in the plant model with regard to a 
number of experimental variables including: 
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• The degree of uncertainty in sensing the environment: This includes missed and false 
alarms, and uncertainty in the location, number, and characteristics of friendly and 
enemy platforms. It will result in the detection of hostile forces while the missions are 
underway. The Discrete Event Controllers need to handle reaction to unforeseen 
events. This experiment will explore reaction dynamics of the friendly forces as the 
mission deviates from presupposed mission specifications. 

• The degree of uncertainty in communications: This includes missed or erroneous 
communications between all levels of the C2 hierarchy.  Decisions are made to allow 
the system to recover from these communications faults. Decisions must be made 
promptly and the time is not available for finding strictly optimal decisions. This 
research considers how to make good decisions within strict time limits. 

• Parameters in the mission and tactical intelligence:  Mission parameters include the 
scale of the mission, i.e., the number of aircraft both sides and the effect of small 
variations in the initial conditions of the simulation.  Tactical intelligence parameters 
include the type of optimization used for finding targets, routing planes, allocating 
resources, etc. 

 
This document describes the experimental plan, which will provide a description of our research. 

 
1.1. Controller Validation Experiments 
 

• Experiment C1 Basic control of individual platforms without the use of a hierarchy.  – 
This is an experiment to confirm the research done on this project on the design of 
individual controllers.  Simulations will be done using one or more controllers for 
individual platforms that are not coordinated through a command and control hierarchy.  
The results will be analyzed to determine goodness of fit measurements for control 
systems such as controllability, permissiveness, and robustness.  It will include methods 
based on research done on this project to extend measurements defined on continuous 
control systems to discrete control systems. 

• Experiment C2 Hierarchical control of individual platforms. – This experiment will 
confirm the research done on fixed hierarchies of controllers.  It will test whether the 
control hierarchies satisfy the basic controller requirements described in C1.  In addition, 
the experiment will determine whether the control hierarchies are scalable and consistent. 

• Experiment C3 Adaptive Coalitions. – This is experiment will confirm the research done 
on the design of dynamic hierarchies of controllers.  These systems can change the 
structure of the hierarchy during the mission in response to events in the simulation.  In 
addition to testing the basic controller requirements in C1 and the hierarchical control 
requirements in C2, the experiment will determine whether the use of a dynamic hierarchy 
improves the performance of the blue team. 

 
1.2. Performance Evaluation Experiments 

 
• Experiment P1 The Effect of Sensor Quality Degradation in Wild Weasel Planes on 

Corridor Clearing Performance – We vary the sensor quality of the Wild Weasels within 
the corridor clearing scenario defined above. 

• Experiment P2 The Effect of Sensor Quality Degradation in Supervisory Planes on 
Wild-Weasel Corridor Clearing Performance – Within the previous scenario, the sensor 
quality of the supervisory aircraft is varied. The affect this has on the system’s ability to 
complete its mission is measured. 
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• Experiment P3 The Effect of Damage Assessment Degradation on Wild-Weasel 
Corridor Clearing Performance – In the same scenario as P1 and P2, the ability of the 
Wild Weasel to detect damage to the target is varied. 

• Experiment P4 The Effect of SAM Lethality on Wild Weasel Corridor Clearing 
Performance in One and Two Level C2 Hierarchies – Wild Weasel aircraft will be tasked 
with clearing two assault corridors as in P1 and P2. Target lethality will be altered and the 
effect on system performance measured in both one and two level hierarchies. 

• Experiment P5 The Effect of Multi-level, Dynamic Hierarchies on Corridor Clearing 
Performance—Wild Weasel aircraft will be tasked with clearing a single assault corridor. 
Target lethality will be modified and performance assessed. Aircraft will be organized into 
a three level, dynamic hierarchy. These results will be compared to the results of 
Experiment P4.  

 
1.3. Red Blue Experiments 
 

• Experiment RB1 Performance evaluation of blue forces (Wild Weasels) in response to 
red forces (SAMs) using different strategies. - Controllers will be implemented for the 
red forces (SAMs). Different strategies are being implemented for red. Monte Carlo 
simulations will be used to analyze the effects of these strategies on the blue controller.  

 
 
2. Statement of Experimental Objectives 
 
2.1. Controller Validation Experiments 
 
Hypothesis C1:  
The controllers developed in this project are relatively robust and capable of controlling the 
nominal plant model.   
 
Level of C1:  

• Level 1 – Design a nominal plant model of a Wild Weasel aircraft implemented as an 
FSA.  Design a controller, also based on an FSA so that the controller operates the 
nominal plant model within a set of specifications without deadlocks or livelocks.  

• Level 2 – Verify the controller.  Define a measure function on a space of formal languages 
and use it to estimate the permissiveness and robustness of the controller. 

• Level 3 –Operate the controller.  Run a set of simulations with the controller and the 
actual plant, i.e. ARL’s battlefield simulator.  Verify that the controller operates the actual 
plant within a set of specifications without significant deadlocks or livelocks. 

 
Description C1:  
In DES control, the plant is as a state machine that processes symbols from an alphabet in a way 
that forms a formal language, L.  The alphabet, Σ, can be partitioned into symbols corresponding 
to uncontrollable events, Σu, and symbols corresponding to controllable events, Σc.  An example of 
a controllable event is a friendly aircraft firing at an enemy target, while an example of an 
uncontrollable event is the enemy target firing on the friendly aircraft.  
 
The controller can be thought of as a recognizer of uncontrollable events and a generator of 
controllable ones.  In analogy to continuous control systems, the controllable events are the plant 
input (feedback), and the uncontrollable events are the plant output. 
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The goals of the control system are given as a set of specifications such as, “If the aircraft runs out 
of weapons, it returns to base.”  The specifications can be formalized as a language K, which is a 
subset of the language L.  The controller attempts to enforce the specifications by restricting the 
plant to operate within K, rather than L.  It can only enable or disable controllable events.  The 
plant is said to be controllable with the controller if it can operate the plant in a way that satisfies 
the specifications without going into a deadlock or livelock.   
  
The controllability definition can be formalized as:  K controls a plant with language L if 

KLK u ⊆Σ Ι , where K  is the prefix closure language of K [Ramadge & Wonham 91].  That is, 
the occurrence of any uncontrollable event at any time permitted by the dynamics of the plant, will 
not violate the control specifications. 
  
In our research however, the actual plant is never completely known.  It is represented by an FSA, 
called the nominal plant model that contains all of the available knowledge about the actual plant.  
The language of the nominal plant model approximates the language of the true plant; the 
controller is designed on this basis. 
   
It is therefore important to determine whether the controller can control languages other than the 
one upon which it was designed.  This quantity is known as robustness.  The more permissive the 
controller, the more likely it is to be able to control the actual plant. 
   
We have determined a method to estimate permissiveness through the development of two 
concepts, a population of plant languages near the language of the nominal plant model, and a 
measure for formal languages of a given alphabet, Σ.  
  
The population of plant languages can be defined as the languages of a set of plants, R, derived 
from the nominal plant model through the application of a small number of primitive graph 
operations such as the addition or deletion of a single state or transition, under the restriction that 
the resultant FSA is deterministic. 
  
We define Σ* as the set of all finite strings of characters from the alphabet Σ and construct a 
measure on the power set of Σ* : 

( ) ( )∑
∞

=

=
1i

ii LNWLµ  

where L is a formal language, µ(L) is its measure, Ni(L) is the number of strings of length i in 
language L, and Wi is a weighting factor for strings of length i. 
The robustness of a controller, C, can then be defined in terms of the measure function. This will 
be discussed further in Section 5.3. 
   
We cannot prove the controllability of the actual plant, because it is not precisely known. We will 
observe the results of simulations with the controller and actual plant to ensure that controllability 
is not violated during any of the runs. 
 
Hypothesis C2:  
The fixed hierarchies of interacting controllers developed in this project are hierarchically 
consistent, permissive, and scalable.  They also reduce the information load at the upper levels of 
the hierarchy. 
 
Level of C2:  



 

 5 
 

 

• Level 1 – Design controllers for a fixed hierarchy that are hierarchically consistent (the 
hierarchical equivalent of controllable) with respect to the nominal plant model.   

• Level 2 – Verify the controllers for a fixed hierarchy.  Determine the permissiveness, 
robustness and hierarchical consistency of the hierarchy.   
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Figure 2.1:  Hierarchical Control 

• Level 3 – Operate the fixed control hierarchies.  Run a set of simulations with the 
hierarchical controller and the actual plant, i.e. ARL’s battlefield simulator.  Verify that 
the controller operates the actual plant within a set of specifications without significant 
deadlocks or livelocks.  Determine the “information load” at the supervisory nodes in the 
hierarchy.  This will be estimated as the number of events per node per unit of simulated 
time. 

 
Description C2:  
Hierarchical structures are natural for C2 applications and are being used to control dynamic 
systems for a variety of tasks.  Control is divided between higher levels, which process events of 
greater generality and larger scope; and lower levels that process events of lesser scope.   
 
This notion has been formalized in a way that is illustrated in Figure 2.1.  The higher level 
controller is designed to control a virtual high level plant with the following components:  the low-
level, i.e. actual, plant; the low-level controller; M, a mapping from strings of the low-level plant 
language to strings of the high-level plant language; and U, a mapping from high-level, 
controllable events to low-level control patterns.  A control pattern is a set of low-level 
controllable events that are to be disabled in the low-level controller. 
 
We start with a low-level plant with language Lp, and a low-level controller with language 

plo LK ⊆ .  We wish to implement further restrictions on the performance of the low-level plant to 

a language .~
plolo LKK ⊆⊆  This is to be done by translating strings from Lp to a high-level 

language, )( phi LML = , which has an alphabet that contains controllable and uncontrollable 

symbols, hi
c

hi
u

hi ΣΣ=Σ Υ .  In this example, each state in the low-level controller is labeled with 
either a high-level symbol or τ0.  This implicitly determines M.  Whenever the low-level controller 
enters a state marked with a high-level symbol, the symbol is added to the high-level translation of 
the low-level string.   
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An alternate implementation assigns an upper level transition (or null) transition to each path 
through the machine. In this way, an upper level transition can be generated for each lower level, 
or aggregation of lower level events.  ARL has implemented its hierarchy in this manner, however 
these two approaches have been shown to be equivalent. 
 
For control to be maintained, the high-level controller needs to be able to control the virtual high-
level plant via the mechanism shown in the figure.  This is called hierarchical consistency.  It will 
be true when hilo KKM =)~( , which can be verified for the hierarchies constructed in this 
experiment.   
 
Note that the example is hierarchically consistent because the only controllable high-level event, 
B, can be disabled with its associated control pattern {d,f}, which blocks the low-level controller 
from entering the state which transmits B to the high-level controller.  This is done by disabling all 
of the low-level events (which are controllable) leading to the low-level state marked B. 
 
In the example, the high-level controller adds the following requirement to the behavior of the 
low-level controller:  an event from the set {d,f} can only occur once in any low-level string.  This 
translates to the high-level requirement that:  the event B can only occur once in any high-level 
string.   
 
This technique can be used to allow a high-level controller to control more than one low-level 
controller as shown in Figure 2.2.  The events recognized by the high-level controller arise from 
the synchronous product of the output symbols produced in each low-level controller. More 
specifically, a high-level controller implemented in this way can recognize the source of a given 
event and control each low-level controller synchronously. 
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Figure 2.2:  Hierarchical Control of Multiple Low-level Controllers 

  
The technique can also be extended to form multilevel hierarchies where every non-root node 
sends higher-level symbols to the level above it, and every non-leaf node sends control patterns to 
the level below it.   
 
The hierarchical control techniques used in this project will be tested for scalability by 
proportionately increasing the size of the hierarchy and battle space as shown in figure 2.3, and 
comparing the results with the objective functions.  In 2.3a, a single controller/plane is attacking a 
single enemy target located in a given area, A.  In 2.3b, a two-level controller hierarchy with three 
planes is attacking three enemy targets in an area of 3A, and in 2.3c, a three-level controller 
hierarchy with nine planes is attacking nine enemy targets in an area of size 9A.  In addition to the 
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objective functions, the permissiveness of each configuration will be calculated and compared as a 
function of scale. 

c. Three Level
     Hierarchy

l
y

 
Figure 2.3:  Control Hierarchy Scalability Test 

 
Hypothesis C3:  
The dynamic hierarchies of interacting controllers developed in this project will improve on the 
performance of the static hierarchies. 
 
Level of C3:  

• Level 1 – Determine the hierarchical consistency and permissiveness for two- and three-
level dynamic hierarchies and compare the results with those for the static hierarchy. 

• Level 2 – Verify that both hierarchies can control the simulator in a series of runs.  
Estimate their robustness and permissiveness. 

• Level 3 – Run a set of simulations with the controller and the actual plant. Verify that the 
controller operates the actual plant within a set of specifications without significant 
deadlocks or livelocks.  Determine the “information load” at the supervisory nodes in the 
hierarchy.   

 
Description C3:  
We have developed a hierarchical design strategy that allows for dynamically changing the 
configuration of the hierarchy while still following the mathematical rules for hierarchical DES 
controllers.  The correctness and effectiveness of this strategy will be tested in Experiment C3.   
  
When the controller for an airplane in a fixed hierarchy enters the destroyed state, it must remain 
there because there are no transitions leaving this state.  Dynamic hierarchies are implemented by 
expanding the meaning of the destroyed state to plane is unavailable, and adding two new events, 
plane is replaced, and plane is reassigned.  This is illustrated for an abstracted version of the 
lowest level controller in Figure 2.4.  
  

b.  Two Level Hierarchy 

c. Three Level 
Hierarchy 
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The supervisory controller is designed so that it does not send the plane is reassigned, or plane is 
replaced event until it has authorized one of these two actions.  Otherwise, when one of the low-
level controllers is in the unavailable state, the supervisory controller acts as though it has one less 
child in its hierarchy.  For example, the supervisor node of a two level controller, requests an 
airplane from the base when one of its low-level controllers is in the unavailable state, and, if the 
request is granted, enables the plane is replaced transition.   A three-level controller, whose root 
node will be called the metasupervisor, can transfer an airplane from one supervisor to another by 
instructing the supervisor of the source to enable the plane is reassigned event, and instructing the 
supervisor of the destination to enable the plane is replaced event. 
  
We will look at the objective functions for runs with fixed and dynamic hierarchies when no 
replacements are available from the base, i.e., when each type of hierarchy has access to the same 
resources.  This will test whether the reassignment capability enhances system efficiency. 
  
One obvious advantage of dynamic hierarchies is that they are able to model reserves.  We will use 
the dynamic hierarchy when reserves are available; we expect a significant increase in 
performance in this case. 

Fighting

At Base

Destroyed

Plane sent on mission

Mission completed

Plane shot down

Fighting

At Base

Unavailable

Plane sent on mission

Mission completed

Plane shot 
down

Plane is reassigned

Plane is replaced

Controllable event

Uncontrollable event

Initial state

a.  Abstracted Low-Level Controller for Fixed Hierarchies b.  Abstracted Low-Level Controller for Dynamic Hierarchies

 
Figure 2.4:  Abstracted Low Level Controllers for Static and Dynamic Hierarchies 

 
2.2. Performance Evaluation Experiments 
 
Performance experiments gauge the Discrete Event Dynamic System’s (DEDS) ability to perform 
under various mission parameters; we intend to measure the sensitivity of the controller to various 
battlefield parameters through Monte Carlo simulations using our air operations simulation. ARL 
defines the DEDS as the conglomeration of both Finite State Automata control devices and 
adaptive Tactical Intelligence (TI) algorithms; TI Algorithms augment the DEDS decision process. 
We hope to show that this amalgam of discrete and continuous control is both suitable and optimal 
for battlefield conditions. 
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Hypothesis P1:  
The ARL DEDS is capable of sustaining up to 50% information loss without serious performance 
degradation. 
  
Description P1:   
This experiment will measure the effects of sensor degradation on wild weasel performance. 
Control systems must be able to adapt to imperfect environmental feedback. In this experiment, we 
obtain a threshold of criticality for information feedback to the DEDS. Sensor quality is varied 
from within the Air Operations Simulator (AOS) parameters file. Specifically, sensor quality is 
measured on a scale of 0.0 to 1.0, 1.0 being the highest quality sensor information. 
 
The experiment will be performed by altering the wild-weasel’s sensor quality parameter in the 
AOS Startup file. Twenty Monte Carlo runs will be performed with each parameter variation. We 
estimate these twenty runs will allow error bounds on averages to be kept within 5%. An exact 
error measure will be computed for each run and used to determine statistical significance of the 
results. Sensor quality will be varied from 0.0 (worst possible sensors) to 1.0 (perfect sensors). The 
baseline will use wild-weasel aircrafts with perfect sensor information. 
 
The scenario will use four wild-weasel aircraft working together to clear two assault corridors in a 
SEAD scenario as defined by the Cyberland document.  SAM sites will be included as targets in 
the scenario. These sites will be impotent target sites, similar to those used in simple war games. 
Effects of sensor degradation on plane survivability will be explored in later experiments. A two-
level hierarchy of planes and supervisors will be used. The supervisory level will be inactive in the 
C2 system. That is, they will only act as information relays, not as C2 nodes. Two planes will 
operate within each corridor. They will operate in two separate regions within the corridor. This 
will prevent strict cooperation and allow us to ascertain the effects of sensor degradation on the 
system. Later experiments will allow cooperation between the planes.  
 
Hypothesis P2:  
The Two Level ARL DEDS is capable of sustaining up to 50% information loss as defined above 
without serious performance degradation. 
 
Description P2: 
This experiment will measure the effects of sensor degradation at the supervisory level on Wild 
Weasel performance. Control systems must be able to adapt to imperfect environmental feedback. 
In this experiment, we obtain a threshold of criticality for information feedback to the DEDS in the 
middle of the hierarchy. 
 
Sensor quality parameters for supervisor planes will be varied in the AOS startup file. The 
resultant effects on mission performance will be observed. Ten Monte Carlo runs will be 
performed with each parameter variation. We estimate these twenty runs will allow error bounds 
on averages to be kept within 10%. An exact error measure will be computed for each run and 
used to determine statistical significance of the results. Sensor quality will be varied from 0.0 
(worst possible sensors) to 1.0 (perfect sensors). The baseline will use supervisor aircraft with 
perfect sensor information. 
 
The scenario will use two wild-weasel aircraft working together to clear one assault corridor in a 
SEAD scenario as defined by the Cyberland document.  SAM sites will be included as targets in 
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the scenario. These sites will be impotent target sites. Affects of sensor degradation on plane 
survivability will be explored in later experiments. A two-level hierarchy of planes and supervisors 
will be used. The supervisory level will be active in the C2 system as a sensor relay. The 
supervisor is equipped with a longer-range radar system. It will relay target-tracking information 
to the wild weasels as they proceed through the corridor. 
 
Hypothesis P3:   
The controller will be able to function adequately with up to a 50% loss of target status 
information1. 
 
Description P3:   
This experiment will measure the effects of status recognition degradation wild-weasel 
performance. Control systems must be able to adapt to imperfect environmental feedback. In this 
experiment, we obtain a threshold of criticality of target status information for the DEDS. Sensor 
quality is varied from within the AOS parameters file. Specifically, sensor quality is measured by 
the probability of ascertaining the status of a target incorrectly. Currently, target status can be 
undamaged, damaged, or destroyed.  
 
The experiment will be performed by altering the wild-weasel planes’ state recognition quality 
parameter in the C4I Startup files used to operate the AOS. Twenty Monte Carlo runs will be 
performed with each AOS file. We estimate these twenty runs will allow error bounds on averages 
to be kept within 5%. An exact error measure will be computed for each run and used to determine 
statistical significance of the results. The probability of an incorrect state estimation will be varied 
from 0.0 (best recognition) to 1.0 (worst recognition). The baseline will use wild-weasel aircrafts 
with perfect sensor information. 
 
The scenario will use four wild-weasel aircraft working together to clear two assault corridors in a 
SEAD scenario as defined by the Cyberland document.  SAM sites will be included as targets in 
the scenario. These sites will be nilpotent target sites, similar to those used in war games. Affects 
of sensor degradation on plane survivability will be explored in later experiments. A two-level 
hierarchy of planes and supervisors will be used. The supervisory level will be active in the C2 
system as a sensor relay. The supervisor is equipped with a longer-range radar system. It will relay 
target-tracking information to the wild weasels as they proceed through the corridor. 
 
Hypothesis P4:    
Two-level controllers will outperform single level controllers. Dynamic two level controllers will 
out perform semi-static and static two level controllers. 
 
Description P4:  
This experiment will measure the effect SAM “accuracy” has on system performance. 
Performance will be measured under three DEDS systems: one-level and semi-static two-level and 
dynamic two-level. Upper-level controllers act as stabilizers for inherently chaotic low-level 
systems. We will attempt to measure this stabilizing effect. One level control systems have not 
upper level supervision. Semi-static two level controllers have the ability to dynamically replace 
planes, but the time required to replace them reduces the effectiveness of the dynamics. Dynamic 
two-level hierarchies can replace planes quickly. 
 
The experiment will be performed by altering the kill probability for the SAM targets in the AOS. 
Ten Monte Carlo runs will be performed with each kill probability. We estimate these 10 runs will 

                                                           
1 Target Status Information: Information pertaining to the “health” status of a target.  
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allow error bounds on averages to be kept within 15%. An exact error measure will be computed 
for each run and used to determine statistical significance of the results. The probability of kill per 
plane per assault will be varied from 0.0 (no threat) to 1.0 (perfect accuracy).  
 
The scenario will use 8 wild-weasel aircraft working together to clear two assault corridors in a 
SEAD scenario as defined by the Cyberland document. 
 
Hypothesis P5: 
Three-level, dynamic controllers will perform at least as well as two level dynamic controllers.  
 
Description P5: 
This experiment will measure the effect of SAM “accuracy” on system performance. Performance 
will be measured under three DEDS systems: one-level, two-level and three-level systems. Both 
multi-level systems will use dynamic reconfiguration to adapt to the battle space. We will attempt 
to demonstrate the stabilizing effect upper level control has on the lower levels. 
 
The experiment will be performed by altering the kill probability for SAM targets in the AOS. Ten 
Monte Carlo runs will be performed. We estimate runs these 10 runs will allow error bounds on 
averages to be kept within 15%. An exact error measurement will be computed for each run and 
used to determine the statistical significance of the results. The probability of kill per target per 
plane will be varied from 0.0 (no threat) to 1.0 (perfect accuracy). 
 
2.3. Red Blue Experiments 
 
Hypothesis RB1:  
DEDS controller hierarchies are capable of competing successfully against intelligent opponents. 
 
Level of RB1:  

• Level 1 – Red SAMs defend the corridor using a strategy based on random movement. 
• Level 2 – The Red forces scatter from fixed centers. 
• Level 3 – Red forces move in small teams, always maintaining a minimum distance 

between each other. 
 
Description RB1:  
Controllers are synthesized for the mobile SAMs that make up the Red forces. Hierarchies of Red 
forces are possible. The fact that SAMs are mobile supports their ability to execute intelligent 
strategies to counter Blue’s corridor clearing mission. We have created a hierarchy of three 
strategies for Red. These strategies embody generic C2 problems. In strategy 1, Red forces move at 
random. ISR readings are made periodically, providing Blue with some knowledge as to Red’s 
location. In strategy 2, Red scatter outwards from a source in an attempt to bait blue forces into a 
false engagement. In strategy 3, Red forces move in small teams in order to increase their lethality.  
  
We have already designed risk-adverse routing strategies as described in section 5.5 of this 
document. Figures 5.22 and 5.23 illustrate the concepts used in the existing algorithms. We define 
strategies for blue by updating these algorithms. In each scenario, ISR information is provided 
giving the position of Red forces at a known point in time. Since Red forces move, Blue can 
construct probability distribution functions (PDF) that vary over time as to where Red might be. 
For strategy 1, the PDF will be a normal distribution. Using the time-varying PDF’s, risk values 
can be calculated for regions in the corridor. Blue then tries to construct a route that maximizes the 
expected value of the number of Red forces destroyed. This expected value contains a term 
expressing the fact that when Blue is destroyed it can no longer engage Red forces. Each Red 
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strategy defines a new PDF. The PDF determines the risk of taking a trajectory. In this way, Blue 
strategies are defined by the perceived red strategy. 
 
2.4. Value of Experiments to the DoD 
 
2.4.1. Controller Validation Experiments 
 
Experiment C1:  
The first stage in determining the value of applying Discrete Event System (DES) control theory to 
JFACC command and control is to determine that controllers can be designed with measurable 
characteristics in terms of the theory itself.  Since DES control theory is a relatively new area, this 
will include original work.  Much of this work is motivated by analogy from Continuous Control 
theory, which has an extensive history in the control of large, complex, dynamic systems.  When 
applied to a single controller, the results will serve as a baseline for the analysis of hierarchical 
networks of DES controllers. 
 
Experiment C2:  
This experiment will determine whether a static network of DES controllers can supplement 
traditional methods of command and control.  The results will determine whether the hierarchy can 
control and coordinate the lower level entities, which correspond to individual aircraft.  The 
experiment will determine how the hierarchy performs in terms of the control theoretic 
measurements. 
 
Experiment C3:  
This experiment will determine whether a dynamic hierarchy, which allows the hierarchical 
structure to change in reaction to events on the battlefield, has advantages over a static hierarchy.  
Quantitative results can be obtained by comparing the control measurements for static and 
dynamic hierarchies. 
 
2.4.2. Performance Evaluation Experiments 
Experiment P1: 
Control systems must be able to adapt to imperfect feedback at the lowest level. This experiment 
validates the notion that discrete event control systems are capable of sustaining moderate levels of 
incorrect or non-existent feedback.  
 
Experiment P2: 
Control systems must be able to adapt to imperfect feedback at the intermediate levels of the 
hierarchy. This is especially true if information is propagated both up and down the hierarchical 
system. This experiment validates the notion that discrete event control systems are capable of 
sustaining moderate levels of incorrect or non-existent feedback. 
 
Experiment P3: 
Imperfect information can plague the outcome of C2 operations. Pilots instructed to continue 
attacking a target until destruction is assured are shown to be inefficient under low information 
conditions. This suggests important design specifications for the control system and for C2 
systems in general. Lower level autonomy could prevent systems from reaching deadlock.  
 
Experiment P4: 
Target lethality can alter the outcome of a battle. Here we show that multilevel coordination 
accompanied with dynamically adaptable hierarchies is better suited to handle threats. 
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Additionally, we show that over all these systems perform with more stability and are more 
resistant to deadlock than non-coordinated systems. 
 
Experiment P5:  
Target lethality can alter the out come of the battle. Here we show that multi-level, dynamic 
coordination, accompanied with a dynamic hierarchy is best suited to handle threats. Overall 
system performance can be improved in this case when resources are low, as supervisors can share 
planes across portions of an assault corridor. 
 
2.4.3. Red Blue Experiments 
Experiment RB1:  
The experiment definition provides three generic strategies for Red:   

• Random movements—This expresses Blue’s uncertainty as to the enemy’s movements. 
• Scatter away from a point—This expresses enemy movements similar to those 

experienced in the US’s recent attacks on Kosovo. 
• Create ambushes by baiting the enemy into a position and attacking en masse—Models an 

intelligent commander in the field.  
 
DEDS controllers need to be able to implement and counteract these basic battle strategies. An 
open question is whether Blue strategies designed to counteract one strategy will be effective 
against another strategy. If not, it would be worthwhile to find a method for recognizing the 
enemy’s approach and choosing the correct response. 
 
 
3.  Description of Experimental Setup 
Experiments will be run using a war game simulation based on the Cyberland scenario provided 
by DARPA. A flat terrain is used. Two 4 mile wide corridors are defined from Wewak to 
Rockatoon city in the Cyberland scenario. 40 F-2E aircraft are allocated to keep the corridors safe; 
this requires removing all threats within a 44 mile swath (2 mile wide corridor + 20 mile SAM 
radius = 22 miles for each side). The enemy has 10 fixed SAM sites in the region, 50 mobile SAM 
sites, 50 AAA batteries and 5 EWCGI radar. Our system controls the activities of the individual F-
2E's and coordinates their activities. Figure 3.1 provides a conceptual view of the scenario. 
A simple initial approach for preliminary experiments uses a two-level hierarchy. The coordinator 
assigns regions for aircraft to cover. The individual aircraft choose their own strategies for 
destroying known targets and patrolling for new threats. As aircraft are destroyed or run out of 
weapons regions must be reassigned. Similarly, as new threats are discovered regions may be 
modified. The coordinator is also in charge of coordinating activities during mission initiation and 
termination. 
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Figure 3.1  Conceptual View of Cyberland Scenario 

The setup for planned experiments will facilitate simulation of a limited SEAD scenario.  A 
bombing mission is to be attempted against an enemy airbase.  For the bombers to be able to 
perform the mission, enemy air defenses must be disabled in two corridors leading to the base.   
 
3.1. Simulation Features 
For Preliminary Experimentation, we are limiting the number of entities involved.  The enemy has 
three types of entities: (1) fixed SAM sites, (2) mobile SAM launchers, and (3) fixed radar sites.  
In the initial experiment, mobile SAM launchers are randomly placed. Any target that has been hit 
is disabled.  Friendly forces are limited to fighter aircraft and wild weasel aircraft (that search for 
and destroy SAMs).  Each aircraft has its own on-board discrete event controller.  The local 
controller has access to local information only.  The higher-level controller interacts with the 
system by receiving Intelligence, Surveillance & Reconnaissance (ISR) inputs and sending 
messages to the aircraft.  At first a flat terrain is used and weather effects are ignored in the first 
iteration. 
 
In the scenario the corridors are given. They are four miles wide at their narrowest, to insure the 
safety of aircraft flying down the middle of the corridor. Each aircraft starts with an initial mission 
to be completed. The aircraft's controller determines the decisions that are taken as events occur. 
Missions will be to patrol parts of the corridor and destroy enemy entities, adjusting the regions 
covered by each aircraft in response to changing conditions. 
 
We will discuss the features of the simulated experiments; to do so succinctly, we will divide this 
discussion into four subsections. 
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3.1.1. Plant 

The model of plant dynamics follows a hierarchical structure in which the lowest level (level n+1) 
represents the continuously varying part of the process (e.g. the battle space itself) while the upper 
levels (i.e. levels 1 to N) represent the discrete-event dynamics resulting from the Command and 
Control (C2) actions of both friendly and enemy forces.  We are developing distributed discrete-
event models at levels 1 to N with the assumption that the continuously varying models are 
implemented by air operations simulators (AOS).  Discrete-event plant models follow the standard 
finite-state automaton (FSA) structure.  The rationale for this approach is explained below. 

Intelligence of the DEC system increases as each new hierarchical level is added. Upper-level 
nodes process more abstract information streams, while lower level nodes exchanges more 
concrete packets of data. As such, lower levels that correspond to decision and control on a 
relatively fast time scale rely more heavily on local feedback control than upper levels that largely 
serve as mission planners and top-level decision-makers. Since FSA-based discrete-event control 
synthesis techniques are fairly well developed and are adequately reported in technical literature, 
we have adopted the FSA modeling methodology.  

The (open loop) FSA model at level m in an n level control hierachy is an aggregation of all closed 
loop systems at level j for all mj > 2.The control law at level m is synthesized based on this 
aggregated model and the corresponding control specifications.  The complete decision support 
system will rely on extensive simulation experiments involving all levels as well as information 
exchange with the AOS. 
 
3.1.2. Plant or System Identification 

Atomic C2 nodes at the thn  hierarchical control level of the Cyberland Scenario, for example 
SAMs, fighter aircraft, Wild Weasels, etc., are modeled as interacting automata.  Figure C.1 shows 
an FSA model of a fighter aircraft. Controllers on-board these entities accept a time-series of 
observations from the Plant Model in the formal language of the automata, which is a prefixed 
closed subset of *Σ  where Σ  is the alphabet of atomic events of the agents and *Σ  is set of all 
finite strings of atomic events including the null event ε .  The interface between the atomic agents 
and the AOS Plant is well defined and limited to the expressions in the formal language that cause 
state transitions in the automata.  The alphabet Σ  of atomic events consists of both controllable 
events cΣ  and uncontrollable events uΣ  as shown in Appendix C depicting the alphabet of the 
fighter aircraft. 
 
3.1.3. Control Signals 
The control signals from the on-board controller at this level are expressed as a function 

{ } c1,0: c
Σ→Σf  where 0)( =σf  disables the controllable event cΣ∈σ  and 1)( =σf , enables the 

controllable event cΣ∈σ . Control efforts are concentrated in the discrete-event part of the process 
and do not include the continuously varying component at the lowest level.  This technology uses 
multi-level optimization and feedback control. It is supported by extensive simulation. To achieve 
this, we have adopted a distributed control technology that provides the flexibility to work with 
multiple, heterogonous plant models and complementary friendly or hostile control systems 
designed by other research groups. This interface is provided through the definition of an event 
language. This event language can then be wrapped around the external system allowing for 
seamless integration with the AC2C test bed. An exhaustive list of the events used in this project is 
found in Appendix C. 
 
                                                           
2 Recall: Lower levels have higher numbers, i.e. in an n-level hierarchy—the lowest level is level n. 
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3.1.4. State Observation Signals 
The state observation signals are concentrated in the discrete-event part of the process and do not 
include the continuously varying part of the process at the lowest level.  Under ideal conditions of 
perfect communications, the state observation signals consist of the states jq  of the FSA and all 
atomic events belonging to the event set Σ  as shown in Table C-1 in Appendix C.  However, 
under inadequate communication services (possibly due to weather conditions or equipment 
failures), some of the events may not be observable.  In that case, the assumption of complete 
observation shall not hold and the effects of some of these unobservable events may be masked to 
the controller.   
 
3.2. Variables or Correlated Parameters 
Independent variables that will be varied are: quality of ISR information, and frequency of ISR 
updates.  Enemy Order of Battle (OOB), enemy strategy, friendly OOB, friendly strategy, number 
of sorties, and number of days maintained are independent variables that will be kept fixed. Other 
independent variables to vary in future tests include those used in defining strategies: ISR update 
frequency, thresholds for changing strategies, parameters of the objective function, etc. 
 
The variables in the objective function include: 
- Trajectories of the friendly forces 
- The area and duration of portions of corridors kept free from enemy threat 
- Time to establish the corridors 
- Set of enemy targets destroyed 
- The risk taken by (or damage inflicted on) friendly forces 
- The list of targets (fixed and mobile) with dependencies 
- The positions of (fixed and mobile) enemy forces 
 
 
3.3. Specification of Test Runs 
Specifications of test runs will be largely determined by simultaneous consideration of the control 
system specifications, range of pertinent plant parameters, and the ISR system.  The test runs will 
be specified by setting the following parameters in the simulator: 

▪ Location Parameter: The location parameter identified the geographic space within which the 
entire area of interest is specified along latitudinal and longitudinal coordinates. 

▪ An emitter may be used as targets of passive sensor (e.g. RF sensors), as the emission 
component of communication devices or as the mission components of active sensors (e.g. 
radar).  There are two variations in the detection of emitters, that correspond to signal 
characteristics: (i) pulsed, scanning, directional beam (e.g. radar transmission); and (ii) non-
pulsed, non-scanning, non-directional (e.g. cellular communications, jammers).  An emitter 
either does or does not communicate. Communicating emitters have a maximum transmission 
range and are required to pass information among various systems or platforms (e.g. AWACs, 
and C2 Node). 

▪ Sensor Parameter: The sensor parameter encompasses sensor modes (1-3) sensor view, sensor 
timing, sensor detection, sensor error and sensor reports. 

 
3.3.1. Baseline 

The baseline will be generated from an ensemble of simulation experiments to provide 
specifications for predicting the outcome of air operations events.  This includes quantitative 
evaluation of performance and robustness of the distributed discrete-event control system.  The 
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baseline will also be used for supporting analytical work, including plant modeling and defining 
control system specifications, for subsequent control systems design.  
 
3.3.2. Monte Carlo 
The stochastic nature of the air operations problem (e.g. random arrival of threats, and enemy 
engagements with uncertain outcomes, unpredictable weather conditions, and noisy 
communication channels) requires stochastic analysis. An analytical solution of the stochastic 
problem is mathematically intractable because the system is highly nonlinear and of large 
dimensions.  Therefore, Monte Carlo simulation is well suited for analysis of this problem.  
Randomization of input variables may be used to demonstrate robustness. Such an ensemble of 
input scenarios will allow us to obtain an estimated mean that can be used as a performance cost 
function for optimization studies.  Furthermore, randomization of input parameters would also be 
used for sensitivity analysis and thus demonstrate a robustness measure of the closed loop control 
system.  It is important that each Monte Carlo simulation experiment is reproducible in the sense it 
represents a unique sample point.  The challenge here is to plan the Monte Carlo experiments in 
terms of the number of simulation runs, number of perturbed input parameters, and spacings of 
these input parameters.  Unless carefully planned, the relevant data could be missed in spite of a 
large volume of simulation data. 
 
3.3.3. Initialization 
For each simulation run, the initial conditions of the control system and all plant parameters will 
be initialized by reading appropriate data files that contain the object specifications of the 
simulated scenario, their current states, and the mission specifications.  Additional data will be 
needed for a set of simulation runs pertinent to a given experiment.  An example is given below: 

▪ Random number generator seeds for selected input parameters 

▪ Number of Monte Carlo passes per experiment and respective starting and stopping times for 
each simulation run 

▪ Lists of selected outputs 
 
 
The following paragraphs describe experiment initialization. 
1. Simulation start–time and duration – AC2C experiment will take place over multiple day time 

periods.  The initial start time is arbitrary in terms of absolute time.  One of the significant 
experiment metrics will be how much time will be required to clear / roll-back enemy air 
defense systems from identified corridors, and maintain this condition for minimum length of 
time.  Simulation duration can essentially be considered as a by-product of this metric.  In 
effect, the simulation will be executed until the termination condition is satisfied. 

2. Random Seed - Simulation control will provide a random seed for initialization of random 
sequences.  Experiments will be repeatable.   

3. Initialization – Simulation initialization will include defining locations of red and blue force 
elements and defining the ISR state.  The ISR state will provide blue forces with initial 
locations of red elements with accuracy dependent on the target type – higher accuracy for 
fixed elements, lower accuracy for mobile elements.  ISR information will also include a 
percentage (by target type) of forces known. Experiment will be conducted with air assets at 
base in a pre-hostility condition.  We will start experiment after initialization transients 
disappeared.  Forces will be initialized based on prepared allocation of resources to air bases.  
We will assume a “normal” readiness condition for attack assets.   

4. Scripts - Red force elements will move according to pre-defined script.  Essentially, we will 
define red-force element movements based on achieving scenario goals.  Mobile missiles will 
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generally move with attached ground forces.  However, one of the elements within simulation 
is to provide the capability to “intervene” and change the scripted motion.  Blue force elements 
will move in accordance with operational commands provided by the C2 element.  These 
commands will adapt in real time as forces report their status, and new ISR and battle damage 
data is obtained. 

5. Experimental Bookkeeping – Simulation will report perceived force status to blue elements on 
a periodic and on-demand basis.  This information will include data on red force location and 
status, and blue force location and status.  Reporting will also include logistics – weapons 
available on a platform, and at airbase, fuel available, and damage / availability of aircraft.  
Simulation will keep track of any aircraft “kills”, actual target damage, and actual vs. 
perceived force locations.  The simulation will measure status of all red-force elements within 
“roll-back” corridor to determine whether AC2C goal achieved yet. 

6. Experimental averages, error statistics and goodness of fit estimations for parameter 
dependence.   

 
3.3.4. Execution Flowchart and Procedures 

 
Figure 3.2 provides a view of the components used in the experiment and their interactions.  
Figure 3.3 provides a more detailed execution flow chart for the experiment. The experiment can 
be conducted either entirely by the ARL T3 organization, or can be separated into components 
performed by T3 and components performed by the EM.   The boxed area shown includes those 
activities that occur within the experiment time loop – and therefore need to be synchronized with 
wall time. 
 
The initialization process includes elements with human-in-the-loop (HITL).  This refers to 
operator interaction in the placement of assets at the start of the experiment.  The operator will 
decide the location of assets.  Alternately, red forces can be placed using combination of 
interactive and automated process.  In the latter, red forces are specified to be in a geographic 
region.  The simulation randomizes their location within the region. 

 
InitializationC4I (Parameter) File

AOS Plant

Blue Controller

Red Controller

Graphical Display

Log File(s)

 
Figure 3.2:  High-level Flow of Experiment Execution. 
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Figure 3.3: Experiment Execution Flow 

 
This is especially appropriate for locations of mobile SAMs and AAA systems – where the 
important aspect for the experiment is that they are involved and not their precise placement   
 
Blue force route planning can be either computer generated using auto-routing provided by the 
AOS, or controlled by TI algorithms.  The route planner is responsible for the development of the 
detailed tracks / waypoints for strike elements to attack target defenses.  During the pre-attack 
planning, the generation of the mission plans doesn’t need to be conducted inside the time loop 
since the goal of the AC2C experiments is not to evaluate how-to rapidly mission plan strike 
routes – but to see how the use of the AC2C controllers contribute to more rapidly achieving the 
rollback goal.   
 
Inside the time-loop, the plan is executed: 1) aircraft routes are flown; 2) ISR data is collected; 3) 
target defenses move, detect, and shoot at strike aircraft; 4) Weapons are released by the aircraft; 
5) targets are hit and damaged; 6) asset locations and status are reported to the controller; and 7) 
battle damage information is collected and assessed.  Status information is provided to the AC2C 
controller and a recommended course of action, including re-adjustment of in-flight missions 
based on updated information, is made.  Though not explicitly tested by ARL, future HITL 
systems are possible in which humans confirm or reject various control recommendations. 
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3.3.5. Outputs 
   
The output will be a log file with a full list of the events, which occurred during the experiment. 
We also use a graphic display that allows the results to be visualized. 
 
The experiment will produce a significant amount of “status” data that will be reported to the 
controller and facilitate adjustment of the battle plan.  At periodic instances of time, control 
elements will “request” status information on: 1) own forces locations; 2) own force health status; 
3) own force weapons availability and target assignments; 4) logistics info – weapons and force 
availability at airbases; 5) ISR estimate of enemy locations; and, 6) Battle damage information – 
estimate of damage as collected by BDI sensors. The generation of the status information will be 
in response to both periodic and on-demand CORBA interface calls by the controller. 
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4. Pre-Lab Analysis 
 
4.1.   Predictions 

 
This section summarizes the procedure for analysis and synthesis of discrete-event control systems 
based on an FSA model of the plant dynamics.  Given the plant model and control specifications, 
the objective is to develop a computer-program that will generate the control algorithm. The major 
steps for analysis and synthesis of a full observation control law are summarized below: 

Steps to Synthesize Supremal Controllable Sublanguage: 
  
1. Formulate mXxXG ,,,, 0δΣ=  By hand 

2. Write in plain English the specifications (objectives) By hand 
3. Check if G is accessible: XxG =)(Re 0  By code 
4. Convert the specifications in step 2 into a state machine: 

mYyYS ,,,, 0αΣ=  
By hand 

5. Check if K=Lm(S) is trim: YyS =)(Re 0  & φ≠∩ mS Yy)(Re  By code 
6. Check if K is prefix closed: mS Yy =)(Re 0  By code 
7. Check if K is controllable: )()()( KprGLKpr u ⊆∩Σ : By code 
 Construct mZzrZSG ,,,, 0Σ=  S is the completion of S .  

 }{)),,(( defined, )),,((:,),( dyXyxryxrZyx ×∉⇒Σ∈∈∀ σσσ   

8. If K is controllable, Choose S as the supervisory controller.  
9. If not, compute the supremal controllable sublanguage: By code 
 0,:0 =−= kZZZ  

kukk ZuzrtsuZZzZZ ∈Σ∈∃−∈∪= ),(..|{:'  
}' ofcomponent   trim tobelongnot  does |'{':1 ZZzZZzZZk −−∈∪=+  

Stop when kk ZZ =+1 ; otherwise 1: += kk , go to 2 
 

 

 

4.2.   Validation Criteria 
The models are validated based on simulation experiments. Using simulations, appropriate 
experiments will be designed to validate all hypotheses. The main criterion for validation is the 
failure to reject a hypothesis under a low confidence level. 
 
The validation criterion for all controllers is that they satisfy the controllability test described 
above.  In hierarchical controllers, each level of the hierarchy must be hierarchically consistent 
with the level below.   
 
4.3.   Evaluation Criteria 
 
The evaluation criteria will be based on metrics such as:  the time to clear corridor, percent of time 
corridors were kept clear, losses incurred, set of enemy targets destroyed, and result of the mission 
(success, abort, failure). 
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The evaluation criteria for controllers are their robustness and permissiveness.  These quantities 
are defined in section 5.3 and a method is presented for their calculation.  In addition, the utility of 
hierarchical controllers can be evaluated by estimating the reduction of information flow as a 
function of control level; it is assumed that good hierarchies will reduce information flow at higher 
levels. 
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5. Results & Discussion 
 
This section contains the controller validation and system performance results, a brief summary of 
how these experiments fit into our overall research program, and how the results will affect (or 
possibly redirect) future investigations.  Algorithmic and theoretical results are also included. 
 
5.1. Controller Validation Results 
 
This section contains the results of experiments to test the validity (in terms of controllability and 
hierarchical consistency), and evaluate (in terms of robustness and permissiveness) the controllers.  
It includes experiments for a single controller, a two-level hierarchy, and a three-level hierarchy.  
There are also experiments to determine how well the plant model (a finite state automaton) 
represents the actual plant (a full-blown battle-field simulation), and an experiment to determine 
how well hierarchical control is able to reduce the information flow at the higher levels of the 
hierarchy. 
 
5.1.1. Experiment C1: Controller for a Single Wild Weasel 
 
Level 1 – Design Controller for a Single Plane: 
The plant model for a single wild weasel is shown in Appendix, Figure C.1.  The definition of its 
states and events are shown in Table C-1.  The requirements for the single airplane controller are 
shown in Table C-2.  Applying the specifications to the plant model resulted in the controller 
shown in Figure C.2. 
 
Applying a set of specifications to a plant model can result in a controller with fewer, equal, or a 
greater number of states.  The results shown in the figure are typical in that the specifications 
resulted in a significant increase in the number of states, from 7 to 29.  The original seven states 
can be seen at the top of the controller graph.  The additional states are needed because each 
physical or logical situation modeled by the plant and controller needs to be represented by a 
unique state.  For example, requirement 5 results in the initial attacking state splitting into 4 states:  
attacking after 1 alarm has been received, attacking after 2 alarms have been received, …up to 4.  
The requirements can combine in various ways to result in huge increases in the number of states.  
This is what motivates us to use hierarchical control.  
 
Level 2 – Verify Controller for a Single Plane: 
We then went through the procedure for testing for controllability as shown in Figure C.3 and 
proved that the controller can control the plant. 
 
As described above, we created a population of plant models near (see section 5.4) the nominal 
plant model to investigate the controller’s robustness with respect to plant uncertainty.  
Populations were created based on the addition of arbitrary transitions and on the addition of only 
valid transitions.  Examples of valid transitions include: 

• Plane is searching for a target; mission is completed or aborted; plane is back at base 
• Plane is damaged; plane gets alarm; plane is destroyed 
• Plane is damaged; plane gets alarm; plane is damaged. 

An example of an invalid transition, which would be excluded from the population in the latter 
case, is: 
•Plane is searching for target; plane gets destroyed; plane is idle in air and safe. 
 
Figure 5.1 shows the fraction of each generation that is controllable by the single plane controller 
for both the arbitrary and valid transition populations.  As shown in the figure, the controllability 
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of each generation drops off quickly for the population based on arbitrary transitions and much more 
slowly for the valid transition case.  The latter case both performs better and is more realistic for practical 
systems.  It was therefore used for all of the robustness experiments in the project. 
 

Controllability by Generation
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Figure 5.1: Controllability of Plant Model Populations 

 
The robustness for the single level controller is 2.6x104, and the permissiveness is 0.86.  Figure 5.2 shows 
the robustness contribution from each generation of the population and the number of automata in each 
generation.   
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Figure 5.2:  Robustness for Single Level Controller 

 
Level 3 – Operate Controller for a Single Plane 
Figure 5.3 shows that the plant model, and therefore the controller recognized 99.2% of the events from the 
actual plant, i.e., the battlefield simulation.  0.8% of the events that are not recognized are caused by search 
events generated after the lower-level controller has entered an alarm state via an alarm event A. The 
controller undergoes the following transitions: 

*10
*

→→ As  
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Once the controller has reached an alarm state, the search event is no longer an allowable input. However, 
because of timing issues, an errant search event may be generated after the controller has changed states. 
The performance of this controller under a number of different scenarios is shown in section 5.2. 
 

 

Actual Plant

Plane 1

Lower-Level
Plant Model

Actual Plant

Plane 1

Lower-Level
Plant Model The Single Plant recognized 

99.2% of the Events

 
Figure 5.3: Recognition of Actual Plant Language by Plant Model 

 
5.1.2. Experiment C2: Fixed Controller Hierarchy for Wild Weasels 
 
Level 1 – Design a Controller for a Two-Level Fixed Hierarchy 
The hierarchy consists of two single-plane controllers at the lower level and a single supervisory controller 
at the higher level.  The same plant models and resulting controllers were also used as the first two levels in 
the three-level dynamic hierarchy, described in the next section.  The only difference is that certain events 
and their resulting transitions are never enabled in the two-level hierarchy (and therefore cannot occur).  
They will be ignored for the purposes of this section. 
 
The low level plant is shown in Figure C.4.  The only difference from the single-plane controller is that an 
additional controllable event, S, defined as search for friend, has been added to the plant.  Since the new 
event is controllable, it does not change the controllability of the low-level plant.  The idea is that if a plane 
gets damaged, another, undamaged plane will escort it back to the base.  Since the planes do not 
communicate directly, this is done through a supervisory controller at the next level of the hierarchy.  The 
plant model for the higher-level plant is shown in Figure C.5.  The event and state definitions are shown in 
the left two columns of Table C-3.  On the right, is the mapping between events in the lower and higher level 
controllers.   
 
In hierarchical discrete-event control, the combined nominal plant and lower level controller form the 
closed-loop plant, which acts as the plant for the higher-level controller. 
 
In order for a high level controller to control multiple low level plants, it must be based on the synchronous 
composition of each high-level plant model, i.e., each closed- loop plant at the lower level.  If there are p 
plants, each of which has n state, the composition contains np states.  The controller for two low-level plants, 
which was used in these experiments, is shown in Figure C.6. 
 
Level 2 – Verify Controller for a Fixed Hierarchy 
As described above, we have established that the lower-level controller satisfies the controllability criteria 
described in Table C.4.  The upper level in a hierarchical controller works by restricting the controllable 
events of the controllers below it.  The plant for the upper level is effectively the closed-loop system formed 
by the lower-level controller(s) and the plant.  In order for the upper level to fulfill its specifications, which 
further restrict the language of the closed-loop plant, the upper level must be able to control the plant 
indirectly, through the lower-level controller.  If this is the case, the hierarchy is said to be hierarchically 
consistent.  Formal criteria for hierarchical consistency are given in the next section.  We have used these 
criteria to verify that the fixed hierarchy is hierarchically consistent.  
 
The bottom two graphs in Figure 5.4 show the controllability of plant populations for both levels of the 
hierarchy, as a function of generation.  The figure shows controllability falls off more slowly, as a function 
of generation, for the upper level controller.  The robustness for the lower level controller is 6.7x104, and the 
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permissiveness is 0.87.  Figure 5.5 shows the robustness contribution from each generation of the population 
and the number of automata in each generation of the lower level controller.   
 
The middle graph in figure 5.4 does not go to zero by the tenth generation, as was the case for the lower 
graph.  This is also reflected in Figure 5.6, which shows the robustness contribution from each generation of 
the population and the number of automata in each generation of the second level controller.  Since the 
robustness contribution increases up the tenth generation, it is too large for us to calculate using our present 
methods and computer system (a 500 MHz Pentium).  We can only say that the robustness is greater than 
6.7x106.  The permissiveness is 0.76.  
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Figure 5.4: Controllability of Each Hierarchical Level Over Plant Population by Generation 

 

Robustness by Population Generation

0
10000
20000
30000
40000
50000
60000

0 1 2 3 4 5 6 7 8 9 10
Generation

Ro
bu

st
ne

ss
 C

on
tr

ib
ut

io
n

Generation Size

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0 1 2 3 4 5 6 7 8 9 10

Generation

# 
of

 F
SA

s

 
Figure 5.5:  Robustness for Lower Level Controller 
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Figure 5.6:  Robustness for Second Level Controller 

 
Level 3 – Operate Controller for a Fixed Hierarchy 
Our calculations show that the robustness of the second layer is at least two orders of magnitude greater than 
that of the first.  In addition, figure 5.7 shows that the addition of a second layer did not result in any 
increase in the percentage of unrecognized events during the operation of the controller.  These results are 
evidence that the hierarchical control concept is scalable. 
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Figure 5.7:  Recognition of Actual Plant Language by Plant Model for a Fixed Hierarchy 
 
5.1.3. Experiment C3: Dynamic Controller Hierarchies for Wild Weasels 
 
Level 1 – Design Controller for a Dynamic Hierarchy 
Figure C.4 shows the lower-level plant model for both the two-level and three-level dynamic hierarchies.  
The state and event definitions are shown in Table C.3.  The most significant change in the plant is that there 
are transitions out of state 5, which is now labeled destroyed/unavailable. That is, the transition out of state 5 
is interpreted as the replacement of a plane that has been destroyed with another plane.  This allows us to 
implement dynamic hierarchies without violating the assumptions that allow us to establish hierarchical 
consistency.  Planes are replaced by one of two new events, r replaces the plane (from another group), and R 
reassigns a new plane from the base.  Another new event x results in transferring a plane out of the group.  
Events x and r cannot occur for the two-level hierarchy because it consists of a single group.  It has no way 
to address other groups to supply or receive planes.  The dynamics of the two-level hierarchy consist of 
losing planes and/or replacing them from the base.  The three-level hierarchy; however, can perform 
transfers from one group to another, which are initiated from the third-level controller.  The specifications 
for the low-level controller are shown in Table C.4. 
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Figure C.5 shows the second-level controller for both the two- and three-level hierarchies.  The states and 
events are defined in Table C.5.  As described in the lower- level controller case, events X transfer to another 
group and M replaces the plane; can only occur in the three-level hierarchy.  The event R reassigns a new 
plane (from the base) and can occur in both cases.  The specifications for the second level of control are 
shown in Table C.6. 
 
The third-level plant is shown in Figure C.7.  Its states and events are defined in Table  
C.7.  The mappings between the second and third levels are shown in Table C.8.  The specifications for the 
third level are shown in Table C.9, and the resulting controller in Figure C.8. 
 

Level 2 – Verify Controller for a Dynamic Hierarchy 
The addition of the third level, which allows transfers of planes from one second-level group to another, 
transforms the fixed, two-level hierarchy into a dynamic three-level control system.  We have verified the 
controllability of the third level and the hierarchical consistency of the controller as described above.   
 
The top graph in figure 5.3 shows the controllability of the plant population for the third level of the 
hierarchy as a function of generation.  It shows that the controllability of all generations is 100%.  This is 
because the only uncontrollable event at the third level is D, aircraft destroyed, and there are no valid 
transitions containing this event that are not already in the plant model.  This means the robustness value is 
extremely large, but finite.  All of the valid plants based on the nominal plant model are controllable by the 
controller.  Its robustness is at least 1.9x109, and its permissiveness is 0.69.  Figure 5.8 shows the robustness 
contribution of the first 10 generations and the number of automata in each generation. 
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Figure 5.8:  Robustness for Third Level Controller 

 
Level 3 – Operate Controller for a Dynamic Hierarchy 
Our calculations show that the robustness of the third layer is large compared to the first two.  In addition, 
figure 5.9 shows that the addition of a third layer did not result in any increase in the percentage of 
unrecognized events during the operation of the controller.  These results are additional evidence that the 
hierarchical control concept is scalable. 
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Figure 5.9:  Recognition of Actual Plant Language by Plant Model for a Fixed Hierarchy 

 
Figure 5.10 shows the levels of information compression for the three-level hierarchy.  The data were taken 
from a number of runs with a single target.  During a run, each aircraft processed 4-7 events at the first level 
of the hierarchy; each group of two processed 1-3 events at the second level; and the entire group of four 
processed 1-3 events at the third level.  This shows information compression ratios of 5 to 1 between the 
first and second levels, and 2 to1 between the second and third levels, for a total compression of 10 to 1 for 
the entire hierarchy.  This is evidence that hierarchical control systems are an effective way to hide details 
from the commander, who may need to control hundreds of planes.  
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Figure 5.10:  Events per Run for Each Level of the Hierarchy 

 
Figure 5.11 is a plot of robustness vs. permissiveness for the three levels of the hierarchy.  It shows the well-
known trade-off between permissiveness and robustness, which is evidence of the validity of our analytical 
methods.  It also shows that the higher the level, the more robust and less permissive the controller.  The 
implication is that the controller is more sensitive to the details of the plant model (i.e., less robust), at the 
more detailed (i.e., lower) levels of modeling. 
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Figure 5.11:  Robustness and Permissiveness for Each Level of the Hierarchy 

 
5.2.  Performance Results 
 
5.2.1. Experiment P1 
 
Figure 5.12 shows a graphical representation of the results of Experiment P1. As predicted ARL’s DEDS 
performed adequately with up to 50% sensor quality degradation at which point the system became 
increasingly unstable. 
 

Sensor Quality  
Degradation (%) 

Proportion of Corridors Cleared  
(10,000 Simulation Sec) 

Standard 
Error 

10 0.69375 0.037925 
20 0.665625 0.042668 
30 0.685938 0.043275 
40 0.679688 0.04435 
50 0.670313 0.036904 
60 0.610938 0.035096 
70 0.515625 0.041203 
80 0.340625 0.032874 
90 0.110938 0.022596 

Table 5.1: Experiment P1 Results 
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Figure 5.12: Experiment P1 Results 
 
5.2.2. Experiment P2 
 
Figure 5.13 shows a graphical representation of the results of Experiment P2. As predicted ARL’s DEDS 
performed adequately up to 50% sensor quality degradation, moreover the system is less influenced by 
sensor degradation at the second level. Note performance does not begin to decrease till well above 60% 
sensor degradation has occurred. 
 
 

Sensor Quality  
Degradation (%) 

Proportion of Corridor Cleared  
(10,000 Simulation Sec) 

Standard 
Error 

0 0.929167 0.051295 
10 0.925 0.052411 
20 0.929167 0.052778 
30 0.916667 0.052705 
50 0.9125 0.053359 
60 0.891667 0.055833 
70 0.695833 0.108333 
80 0.625 0.098601 
90 0.4375 0.097222 

100 0.4875 0.074587 
Table 5.2: Experiment P2 Results 
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Corridor Clearing Potential vs. Supervisor Sensor Degredation
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Figure 5.13: Experiment P2 Results 

5.2.3. Experiment P3 
 
Figure 5.14 shows a graphical representation of the results of Experiment P3. The figure shows that ARL’s 
DEDS is clearly sensitive to target status recognition. In fact, above a 40% probability of incorrect 
recognition the controller is not capable of destroying more that 50% of the targets available. This may 
indicate a problem to be solved in the ARL C2 hierarchy. 
 

State Recognition  
Degradation (%) 

Proportion of Corridor Cleared  
(10,000 Simulation Sec) 

Standard 
Error 

0 0.670313 0.039271 
0.2 0.617188 0.030745 
0.4 0.489063 0.036877 
0.6 0.26875 0.025397 
0.8 0.217188 0.01613 
1 0.2 0.018014 

Table 5.3: Experiment P3 Results 
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Figure 5.14: Experiment P3 Results 

 
5.2.4. Experiment P4 
 
Figure 5.15 shows a graph of the results presented in Tables 5.4 and 5.5. This data compares non-
hierarchical systems to semi-static hierarchical systems. The charts indicate that non-hierarchical systems 
were able to outperform semi-stable hierarchical systems for weak enemies but faired worse when faced 
with stronger, more lethal enemies.  Figure 5.16 shows a graph of a non-hierarchical system vs. a fully 
dynamic hierarchical system. Note that the hierarchical system here performs better than the semi-static 
system from Figure 5.15 and that it is significantly more stable than the non-hierarchical system. This shows 
the stabilizing force of the second level.  
 

Probability of Kill 
(Per Assault) 

Proportion of Corridor 
Cleared  

(10,000 Simulation Sec) Standard Error 
0 0.75 0.055902 

0.1 0.65 0.122474 
0.2 0.4375 0.16457 
0.3 0.33125 0.177805 
0.4 0.13125 0.094004 
0.5 0.09375 0.075116 
0.6 0.05625 0.050861 
0.7 0.0125 0.016667 
0.8 0 0 
0.9 0 0 
1 0 0 

Table 5.4: Experiment P4 Single Level Controller Results 
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Probability of Kill 
(Per Assault) 

Proportion of Corridor Cleared  
(10,000 Simulation Sec) 

Standard 
Error 

0 0.26875 0.079167 
0.1 0.2625 0.078616 
0.2 0.175 0.069222 
0.3 0.13125 0.029167 
0.4 0.10625 0.0375 
0.5 0.1 0.05 
0.6 0.05 0.040825 
0.7 0.05 0.036324 
0.8 0.025 0.027639 
0.9 0.025 0.027639 
1 0 0 
Table 5.5: Experimental P4 Two Level Semi-Static Controller 

 
Proportion of Corridor Cleared vs. Target Kill Probability
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Figure 5.15: Proportion of Corridor Cleared vs. Target Kill Probability 
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Proportion of Corridor Cleared vs. Target Lethality
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Figure 5.16: Dynamic Hierarchy vs. Single Level Controller 

 
5.2.5. Experiment P5 
Figure 5.17 shows the results in Table 5.6. These experiments use a three-level, dynamic hierarchy. We have 
matched this three-level system against several stationary, hostile targets and varied the lethality of these 
targets. As the figure demonstrates, there is not a significant difference between the utility of a three-level 
dynamic controller and a two level dynamic controller. This was expected since the principal use of the third 
level was dynamic reconfiguration of the second level groups. (i.e. shifting planes between second level 
supervisors) Even though dead planes could be immediately replaced by planes in the air, at some point a 
plane would be called from reserves at the base, just as it was in the two-level controller. 
 

Probability of Kill (Per 
Assault) 

Proportion of Corridor 
Cleared  

(10,000 Simulation Sec) Standard Error 
0 0.5625 0.07683 

0.1 0.5375 0.083749 
0.2 0.4 0.089753 
0.3 0.4375 0.07683 
0.4 0.3625 0.058333 
0.5 0.325 0.084984 
0.6 0.3375 0.038188 
0.7 0.35 0.11667 
0.8 0.2 0.076376 
0.9 0.1875 0.067185 

Table 5.6: Experiment P5 –Three Level Hierarchy 
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Percent Corridor Cleared vs. Target Lethality
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Figure 5.17: Three Level Dynamic Hierarchy 
 
5.3. Red-Blue Experimental Results 
 
5.3.1. Experiment RB1: Level 1 
Figure 5.18 shows results from the first Red/Blue experiments. We have matched the dynamic two-level 
controller from experiment P4 against an adversary capable of making random movements within (and out 
of) two SEAD corridors. We have varied the lethality of the targets. For comparison, we have provided the 
results from P4 demonstrating the improved performance the controller has against a moving target. We 
attributed this performance improvement to the inability of the SAM’s to fire while they are moving. Since 
the SAM’s are instructed to move randomly at random times, planes have a non-zero chance of attacking a 
moving SAM. If this is the case, the SAM’s weapons are unable to fire thus improving the likelihood of a 
successful attack. 
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Corridor Clearing vs. Target Lethality
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Figure 5.18: Experiment RB1 Results 

 
5.3.2. Experiment RB1: Level 2 
Figure 5.19 shows the results of RB1-Level 2. This experiment explored the affects of target scatter on battle 
outcome. Just as in the Level 1 experiment, we see a marked improvement in corridor-clearing performance. 
This is likely due to limitations in the AOS that make it impossible for SAM’s to fire while moving. 
However, there is a decrease in performance as SAM lethality increases. 
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Figure 5.19: Experiment RB1 Results 
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5.3.3. Experiment RB1: Level 3 
Figure 5.20 shows the results from experiment RB1: Level 3; in this experiment, targets where allowed to 
move in small teams of three. A leader was randomly selected and allowed to move in any direction. The 
remaining two members of the team would follow the leader maintaining a constant distance. In this way, 
random target patterns were established. The system performance in this moving SAM experiment was 
significantly worse than in the pure random walk experiment. We attribute this to an increased probability of 
encountering a motionless SAM as well as the layout of the battlefield. Targets moving in unison were 
forced to remain close to each other. This greatly exacerbated the danger to a plane as it attempted to acquire 
a target. Planes drawn too close to multiple targets can be easily destroyed. 
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Figure 5.19: Experiment RB4 Results  

 
5.4. Theoretical Results 
 
This section contains control-theoretical results and insights developed during the project.  All of the 
sections represent original work done by ARL except for the section on Hierarchical Consistency that was 
communicated to us by Dr. W. Murray Wonham.  We have derived a measure for formal languages and used 
it to quantitatively determine robustness and permissiveness for discrete event control systems.  This is the 
first technique for quantitatively evaluating and comparing the quality of these systems.  We have also 
explored an entropy-based (in the information-theoretic sense) technique to suggest effective aggregations 
for mapping lower to higher-level languages in hierarchical control structures.  This is a critical part of 
designing hierarchical control systems and the approach shows promise. 
 
5.4.1.  Language Measure 
 
In order to evaluate the controller, a measure is proposed for formal languages. It will then be used to 
calculate permissiveness and robustness: 

( ) ( )∑
∞

=

=
1i

ii LNWLµ  

where L is a formal language, µ(L) is its measure, Ni(L) is the number of strings of length i in language L, 

and Wi is a weighting factor for strings of length i.  For an alphabet containing k symbols, ( ) i
ki kN =Σ* .  By 
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convention assume that ( ) 1* =Σkµ , we must find a weighting function such that 1
1

=∑
∞

=i

i
i kW .  The 

weighting function must therefore decrease at least exponentially for large i.  This defines a family of 
weighted counting measures that satisfy: 2121 )()( LLLL ⊆≤  if µµ .  We define a metric 

)(),( 212121 LLLLLLd ΙΥ −= µ  as a measure of the distance between two formal languages.   
 
5.4.2. Permissiveness 
 
Assume that a plant G, with a language L(G), and a controller K is implemented as an FSA; the language of 
the controlled plant L(G|K) and assume that: )|()|( KGLKGL ′⊂ , where, K ′ is another controller also 
satisfying the control requirements. It can be said that, for the given application, K ′  is a better controller 
than K because it allows a richer set of behaviors in the closed-loop system.  These additional behaviors 
could allow the less restricted plant to perform better under some conditions.  Given our language measure, 
we can define a quantitative measure of the permissiveness of a controller K on a plant G as: 

)(
)|()(

G
KGKG µ

µ
=P .  The permissiveness will be a real number between 0 and 1.   

 
If the permissiveness is 0, then φ=)|( KGL , the controller has shut down the plant and no behaviors are 
possible.  If the permissiveness is 1, then )()|( GLKGL = , i.e. the behaviors of the closed and open-loop 
plants are identical and no control is being exerted. 
 
5.4.3. Robustness 
 
Because the true plant can never be precisely known, it is represented by an FSA, called the nominal plant 
model, which contains all of the available knowledge about the actual plant.  The language of the nominal 
plant model approximates the language of the plant, and the controller is designed on this basis. It is 
therefore important to determine whether the controller can control languages (i.e., plants) other that the one 
for which it was designed.  This characteristic is known as robustness with respect to plant uncertainty.  The 
more robust the controller, the more likely it is to be able to control the actual plant. 
 
To measure robustness, one must look at plants other than the nominal plant model.  The measurement is 
defined in terms of how well the controller can control a population of plants similar to the nominal plant 
model.  The method for defining that population is discussed below. 
 
In an applied research problem such as JFACC, insight into developing the plant population can be gained 
by looking into the physical meaning of the states, events and transitions.  The states of the plant automaton 
correspond to the physical states of the plant and the events correspond to the physical events of the system 
dynamics.  This suggests that states and events should not be varied in determining a realistic plant 
population.  This leaves a finite, but large, population of automata created by varying the transitions.  
Eliminating transitions that are physically or logically impossible can further reduce the number.  For 
example, a plane cannot attack a target after it has been destroyed.  Furthermore, since eliminating 
transitions merely reduces the plant behavior to be controlled, we have based our population on only the 
addition of new transitions.   
 
Robustness is defined as ( ) ( ) ( )( )∑

∈′

′′=
GSG

G GLGLdKGCK ,,)(R , where )(KGR  is the robustness of 

controller K on plant G, SG is the plant population around plant G, and ( )KGC ,′  = 1 if K controls G′ , and 
0 otherwise.   
 
In order for this calculation to be practical, the population size must limited without invalidating the results.  
This is done in two ways.  First, the number of transitions that were added to the plant model for a given 



 

 40 
 

 

member can be used to organize the population.  We refer to this as the generation of the population 
member.  Automata that were created by adding a single transition are referred to as generation 1; automata 
that were created by adding two transitions are referred to as generation 2, etc.  As shown in the previous 
section, there is evidence that the number of controllable automata goes to zero after a small number of 
generations, and we can cut off the population at that point.  Second, we generate a random sample of each 
generation and use it to estimate the fraction of controllable automata in that generation. 
 
5.4.4. Hierarchical Consistency 
 

Hierarchical consistency can be guaranteed under the following conditions: 
• The higher-level controller controls the higher-level plant model. 
• There are no silent transitions in the higher-level virtual plant model.  This would occur if there 

were a transition, w, in the lower-level machine such that ),,(),,(: 20121 qqxsswU τσ → , and 

21 qq ≠ . 
• The higher-level virtual plant model is deterministic.  This means that there is no pair of transitions, 

v, w, in the lower-level machine such that ),,(),,(: 21211 qqxsswU aτσ → , and 
),,(),,(: 41423 qqxssvU aτσ →  where 0ττ ≠a , and 42 qq ≠ . 

 
5.4.5. Aggregation 
 
In hierarchical control, the higher-level controller operates on an alphabet that is aggregated from the 
language of the lower-level controller(s).  Some symbols in the lower-level language may be ignored, some 
lower-level symbols may be translated directly into higher-level symbols, and some sequences of lower-
level symbols may be translated into a single higher-level symbol.  In order for the higher-level controller to 
effectively control the lower level, the mapping between the lower and higher-level languages must retain 
important information about the lower level while ignoring the finer details. 
Though it is not feasible to automatically aggregate events with no human supervision, certain 
measurements can be made to reduce the work necessary in constructing an effective event aggregation 
scheme. 
 
 
We represent the language of the plant controlled by the lower-level controller as a set of entropy vectors, 
one for each integer sub-string length.  For example, a formal language with alphabet a,b would be formally 
represented as shown in Figure 5.11.   
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Figure 5.20: Representation of a Formal Language with Alphabet a,b 
 
The value of each component is determined from a finite sample of the language using the formula for 

modified Shannon Entropy: 
k
obs

ii
i N

ppV 2log−
≈ , where pi is the probability of sub-string I occurring in the 

sample, sub-string I is of length k, and k
obsN  is the number of observed sub-strings of length k.  Figure 5.12 

shows the entropy of the 13 most frequent sub-strings from a simulation run.   
 

                                                           
3 Here we intend ⊗  to indicate vector concatenation, not tensor product.  
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 string probability p entropy
a 0.287778 0.0526942
A 0.265556 0.0517624
D 0.197778 0.0471188
DA 0.150575 0.042119
aa 0.143678 0.0411852
Aa 0.14023 0.0407
AD 0.128736 0.0389906
ADA 0.123369 0.0383197
DAD 0.107948 0.0356694
ADAD 0.102941 0.0349094
DADA 0.102941 0.0349094
ADADA 0.0988593 0.0342938
DADAD 0.0963245 0.0337896

Event Defination
a fire missle
A alarm 
D enemy destroyed

 
Figure 5.21: Entropy of the Most Frequent Substrings in a Simulation 

 
It suggests a mapping from ++ DDAA *)(  to a symbol in the higher-level language.  In the preceding 
expression, a superscript of + indicates zero or one occurrence and a superscript of * indicates zero or more 
occurrences. 
 
Using the entropy technique, controller designers can isolate common and rare strings in the plant language 
and aggregate them to the upper level accordingly. Though it is common for strings with low entropy to be 
aggregated to the null upper level event, this is not an a priori necessity. Often, low entropy strings can 
signal a rare, and important event in the lower level. It is up to the designer to use the information provided 
by the entropy calculation. 
 
5.5. Algorithmic Results 
 
5.5.1. Routing 
 
PSU’s JFACC team compared the quality and speed of routing solutions generated by different algorithms.  
The experiments so far have used an minimum distance objective function.  A more sophisticated objective 
function, weighing both risk and time, will be used in future experiments.  A description of each algorithm 
and the results of the comparisons follow.   
 
Greedy Algorithm:  
Given a set of enemy targets to destroy and the current location of the wild weasel, a greedy algorithm called 
the nearest neighborhood search algorithm is developed to obtain a sequence and route to destroy the targets. 
The greedy algorithm begins with the current location of the wild weasel and destroys the enemy target that 
can be reached by traversing the least cost path. Then among the undestroyed targets, the algorithm next 
selects the enemy target that can be reached by traversing the least cost path. This process continues until all 
known enemy targets are destroyed. Then the wild weasel patrols its assigned region. The main advantage of 
using the greedy algorithm is to obtain high responsiveness for the tactical intelligence module. Hence the 
sequence and route to destroy the targets can be obtained extremely fast. However the price to pay for this 
high-speed response is the quality of the response. In most cases this response from the tactical intelligence 
is far from optimal, hence the overall objective of minimizing the cost of destroying the targets will not be 
accomplished. 
 
Resource Bounded Optimization (RBO) Algorithm:  
Given a set of enemy targets to destroy and the current location of the wild weasel, an RBO algorithm based 
on the 2-opt search for the well-known graph theoretic problem, the traveling salesperson problem, is 
developed. Note that the problem of obtaining a sequence and route to destroy the targets that can be stated 
as a Hamiltonian path problem as explained in the algorithm that follows. In the RBO algorithm, the solution 
from the greedy algorithm is taken and improved. During each iteration, a random, pair-wise interchange to 
the current sequence and route to destroy the targets is performed. After several iterations, the algorithm will 
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converge to the optimal solution. The number of iterations the tactical intelligence will perform will depend 
on the time available to respond. The solution quality will improve with the number of iterations. This 
algorithm can be stopped at any iteration and a solution can be obtained. The numerical examples indicate a 
vast improvement in the solution quality (as compared to the greedy algorithm and the optimal algorithm) in 
a few iterations. However, the disadvantage is that it may take a long time to obtain the optimal solution 
especially in ill-posed problems. 
 
Hamiltonian Path:  
The path traversed by the wild weasel from the current location to the last destroyed target is referred to as 
the Hamiltonian path in graph theory literature. The algorithm uses a network representation such that the 
known enemy targets are the nodes of the network. There is an arc from every node to every other node 
denoting the ability to go from any target to any other target. The cost on the arc represents the cost of 
traversing from one target to another and is computed using the expected travel time and expected risk. The 
algorithm begins by solving the minimal spanning tree (another well-known graph theoretic problem) of the 
network. If the spanning tree is not a Hamiltonian path, then it has arcs that violate the Hamiltonian path 
requirements. The solution of the minimal spanning tree acts as the lower bound. Then at every iteration the 
lower bound is improved using a branch-and-bound technique where one of the violating arcs of the 
spanning tree is set to a high cost. The algorithm stops when a Hamiltonian path is obtained, i.e., there are no 
more branches to consider. This algorithm can guarantee optimal solution after a sufficiently large number 
of iterations. The major drawback is that if the algorithm is stopped during any iteration, no solution will 
exist that can be responded by the tactical intelligence. 
 
Optimal Algorithm:  
This algorithm uses complete enumeration of the entire solution space to obtain the optimal solution. 
Therefore every possible sequence and routes to destroy the targets are considered and the best is chosen. 
This is a very time-consuming algorithm and takes n! computations if there are n targets to be destroyed. 
Since this algorithm guarantees an optimal solution, it is used for benchmarking other algorithms.  
 
The algorithms are tested here for different numerical values. In particular, the performance of the new RBO 
algorithm developed is tested against the other algorithms for the SEAD scenario. 
 
The following table shows the average results of experiments run with thirty sets of enemy targets.  In these 
experiments, there are eight enemy targets and one attacking plane.  Resource Bounded Optimization (RBO) 
is used with vary numbers of iterations, to determine the value of additional iterations compared to their cost 
in computing time. 
         
 
Algorithm Solution Quality  (compared to 

optimal solution) 
Number of Floating Point 
Operations 

Greedy (nearest neighbor) .9570 992 
RBO – 5 iterations .9683 2,589 
RBO – 10 iterations .9727 4,095 
RBO – 25 iterations .9824 8,601 
RBO – 50 iterations .9845 15,898 
RBO – 100 iterations .9868 30,395 
Hamiltonian Path ( few iterations) .9907 49,048 
Optimal (complete enumeration) 1.0000 351,769 

Table 5.6:  Average Results of Experiments Run with Thirty Enemy Targets. 
 
One final result noticed by PSU’s JFACC team, was the effect of target positioning on a mission’s success 
or failure. We noticed that planes did better with widely spaced targets than with closely spaced targets. 
Often a plane would attempt to move directly through the field of fire of multiple targets because of its 
nearest neighbor attack algorithms. We will rectify this by constructing a new assault algorithm and testing it 
against the old results. Figure 5.12 illustrates this issue. 
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Figure 5.22:  High Risk Situation. 

 
The new route optimization problem, minimizing risk *time, is shown below.  In the next generation of this 
model, we are using distance as a proxy for time, and calculating a flight path to follow, instead of a 
sequence of targets. Figure 5.13 illustrates the new problem definition for attack plane routing. 
 
 
 

 

 
 

Figure 5.23: Wild weasel platform route chosen to minimize risk. 
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5.6. Other Experiments 
 
5.6.1. Controller Metric Experiments: Preliminary Results for Plant Uncertainty Tolerance 
 
We have obtained some preliminary experimental results on the sensitivity of our controller with respect to 
uncertainty in the plant, that we thought may be of interest.  We have proposed this as a measure of 
permissiveness.  The controller is designed to control a nominal plant model.  We have tested it, for 
controllability of similar models, which are modifications of the nominal plant model.  Figure 5.15 
illustrates the relationship between the language of the plant model, Lp, the language of a population of 
similar models, Lext, and the set of arbitrary strings of plant events, *

pΣ . 
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Figure 5.24: Language Domains for Similar Plant Models 

 
Given Lp = L(Gp), where Gp is the Finite State Automaton (FSA) plant model, and a controller, C, which 
controls Gp, we can define a set of FSAs, G, where each element of G is derived from Gp by the addition of a 
finite number of uncontrollable transitions, and Lext = L(G ). 
 
We estimate C’s performance with respect to plant uncertainty as the fraction of the FSAs in G that are 
controllable by C.  The set G can be divided into subsets as follows: 

 
where each subset, Hl , contains the FSAs that can be derived from Gp by adding l uncontrollable transitions, 
and lmax = nuns – tup , where nu is the number of uncontrollable events, ns is the number of states, and tup is 
the number of uncontrollable transitions in Gp. 
 
The subset H0 , which contains only Gp, is referred to as generation 0; the subset H1 , which contains the 
plant models derivable from Gp with the addition of a k uncontrollable transitions, is referred to as 
generation k for k=1,2.....  Figure D.2 shows estimates of the number of FSA plants per generation, which 
grow exponentially.     
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Figure 5.25:  Number of Similar Plants Per Generation. 
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Figure 5.26:  The Controllability of Each Generation in G 

 
Figure 5.17 shows estimates, with error bars, of the fraction of each generation that is controllable by C.  It 
controls all of generation 0, the original plant model, and about 75% of generation 1.  The fraction decreases 
until generation 4, where it appears to increase.  We have indicated the last part of the graph with a dotted 
line because the features in this region are smaller than the error bars and may be statistical fluctuations.  If 
the permissiveness is defined by the fraction of G that is controllable by C, its value will be dominated by the 
controllability of the last few generations due to the exponential increase in |Hl | with respect to l.  The graph 
indicates it will be between 40% and 60%. 
 
We will continue the analysis of these results to verify our conclusions and increase the sample size to 
improve accuracy.  We will also be looking at specific plants in the population to gain insight as to why 
some are controllable and others are not. 
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5.6.2. Early Performance Experiments: 
Our prototype test bed incorporates a simple environment that tracks the status of multiple planes and targets 
in featureless terrains of varying size. It includes hierarchical information passing and tactical intelligence. 
We use probabilities of kill from the cyberland scenario and restrict the altitude of the plane to 10,000 feet. 
We ran each experiment type on varying game field sizes. As the game board gets larger, the probability of 
successfully destroying the targets decreases. Additionally, the probability of successfully destroying all 
targets decreases as the number of targets increases.  
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Figure 5.27: Results From Two Aircraft One-Target Scenarios. 

 
Figure 5.18 presents results from a tactical intelligence controller, where two planes initiate a coordinated 
attack against a single target. The blue line is a graph of the proportion of wins by a set of planes using a 
normal controller with coordinated attack but   not    sharing      information.     The   pink   line shows the 
results of   incorporating coordination into the plane controller. One plane informs the other when the target 
is detected. The yellow line allows the planes to make coordinated maneuvers in attacking the target. A 
higher level of intelligence increases the chances of success. These tests were performed partially to debug 
our testbed, but also to illustrate the value of coordination in C2. 

 

SEAD Scenario 
ARL’s JFACC team has run a variety of experiments with our simulator and current controller. Figure 5.19 
contains results from our initial experiments. The scenario has been initialized with one or three planes as 
labeled. During the three-plane experiments, upper-level tactical intelligence allows planes to assist each 
other during combat. Specifically, if one plane is destroyed the others assume its target list and continue with 
the mission. During the single plane experiments, we have varied the ability of the controller to observe 
events as they are generated by randomly masking event generation. As you can see this masking has a 
negative effect on the ability of the controller to perform; however, statistics show that even if over 70% of 
the events were to be unobserved there would be a finite probability that the controller could still 
successfully destroy one target.   

Another experiment tests the ability of the controller in unforeseen conditions. We test the controller’s 
reaction to variations in the range at which it is allowed to fire. As is expected the closer a plane needs to be 
to shoot the better the chance it has of dieing. However once the controller is allowed to fire at the critical 
distance of 5000 meters, the distance at which it was designed to perform, the ability of the controller to hit 
its target increases dramatically. Figure 5.20 shows the results of these experiments: 
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Figure 5.28:  Results of Initial Experiments 

 
This experiment is a starting point for further research into adaptive tactical intelligence. Assuming a 
commander (controller) could see and recognize the negative feedback produced if pilots cannot fire at 5000 
meters (because of weather for example) it [the controller] might reconfigure its mission specifications to 
alleviate this problem or at the very least to find a work around.  
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Figur e 5.29: Sensitivity of Wild Weasel Performance to Ordnance Range. 
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5.6.3. Early Large Scale SEAD Experiments: 
The results in this section have been produced by running Monte Carlo simulations of large scale SEAD 
scenarios. These results were the product of nearly 14 days of continuous experimentation. All of the results 
were guaranteed to have an error measure of less than or equal to 5%; of the four sets of experiments. 
 
Figure 5.21 shows a graph of initial large-scale mission and their corresponding results. Here we are 
comparing four algorithms. One uses a tactical intelligence module to reconfigure when planes are 
destroyed. The other does not. We are also examining the effect lack of information has on overall mission 
success. In this case, planes were allowed to know 20% of the targets in their corridor before going out on 
missions. 
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Figure 5.30: Early Large Scale SEAD Experiments 

 
 

 
 

Figure 5.31:  Current Visualization Interface 
 
Other accomplishments include cosmetic changes to the C4I Simulator’s Openmap™ interface and code for 
moving targets. Targets are capable of moving on their own in various patterns defined as methods and 
called from their “update” methods. Figure 5.31 shows moving targets and also demonstrates some cosmetic 
changes made to the SAM images. 
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Appendix A: Objective Function 
 
Our experiment is a simulation of a limited SEAD scenario. A bombing mission is to be attempted against 
an enemy airbase. For the bombers to be able to perform the mission, enemy air defenses must be disabled in 
multiple corridors leading to the base. We will simulate the dynamics in establishing the corridors and 
keeping threats to friendly aircraft from the corridors. 
 
For Preliminary Experimentation, we are limiting the number of entities involved. The enemy has three 
types of entities: (1) fixed SAM sites, (2) mobile SAM launchers, and (3) fixed radar sites. In the initial 
experiment, mobile SAM launchers perform a random walk of the terrain. They stop wandering and prepare 
to attack at random points in the walk. This logic may be augmented later. Any target that has been hit is 
disabled for a period of time following an exponential distribution with mean lambda, which will be fixed in 
the initial experiment. 
 
Friendly forces are limited to Wild Weasels, which search for and destroy SAMs. Each wild weasel has its 
own on-board discrete event controller. The local controller has access only to local information. The 
higher-level controller interacts with the system by receiving ISR inputs and sending radio messages to the 
aircraft. At first a flat terrain is used and weather effects are ignored in the first iteration.  For later 
experiments (after March) more complexity will be introduced. 
 
In the scenario the corridors are given, they are four miles wide at their narrowest, to insure the safety of 
aircraft flying down the middle of the corridor.  
 
Each aircraft starts with an initial mission to be completed. The aircraft's controller determines the decisions 
that are taken as events occur. Missions will be to patrol parts of the corridor and destroy enemy entities, 
adjusting the regions covered by each aircraft in response to changing conditions. 

 
The objective function has four main fields: 

1. Area of airspace (in cubic meters) kept free for a time unit (minutes) 
2. Number and type of enemy targets neutralized 
3. Number of friendly resources destroyed in the operation 
4. Time required to clear the corridor 

All these fields are relevant and need to be considered in the objective function. The objective function must 
therefore be a weighted non-linear function that simultaneously: 

• Maximizes the expected value of the random variable )),()...,3(),2(),1(( GNXXXXsS = expressing 
the area and duration of portions of the corridor kept free from enemy threat. 

• Minimizes the expected value of random variable )),()...,3(),2(),1(( GNXXXXtT = expressing the 
time needed to establish the corridor. 

• Maximizes the expected value of random variable )),()...,3(),2(),1(( GNXXXXuU =  giving the value 
of net enemy targets destroyed. 

• Minimizes the expected value of random variable )),()...,3(),2(),1(( GNXXXXvV = expressing the 
risk (damage) taken by (inflicted on) friendly forces.  

where )(iX  is the trajectory of friendly aircraft i. )(iX  is in terms of aircraft i's position and velocity at all 
times. G is a known set of parameters describing actions and states of friendly and enemy forces. 
 

When enemy targets (stationary or moving) are in the neighborhood of i, an event occurs that forces a 
decision to be made. The objective function is expressed quantitatively as: 

( )( ) ( )( ) ( )( ) ( )( )VEfCUEfCTEfCSEfC 44332211 +++  
 
where E() denotes expected value of the random variable. Cj are time varying weights (costs) expressing the 
relative importance of factors S, T, U, and V as defined above. The weights sum to one.  fj are non-linear 
positive (negative) valued functions of  the factors we wish to minimize  (maximize) T, V (S,U).  
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Other factors, such as weapon and fuel consumption could be added to this approach. 

One factor that we consider, which is not contained in this function, is the time required to make a decision. 
We are studying the use of resource-bounded optimization techniques for decision making. These techniques 
try to make the best decision given time and resource constraints. 
 

In addition to possible improvements already given, later possible enhancements to the scenario include, 
but are not limited to: 

• Addition of fuel constraints and tankers to re-fuel wild weasels. 
• Addition of AWACS nodes for coordination of portions of the battlespace and the coordination 

necessary among the AWACS. 
• Addition of fighter aircraft on both sides. 
• Addition of bombers to destroy the airfield and escort fighters. 
• Addition of jammers. 
• Consideration of hierarchies of more levels of command. 
• Evaluation of the influence of a full range of sources of error. 

Based on the results of the first experiment, we will determine which of these should be added to the model. 
 



Appendix B: Mission Overview 

 
West Cyberland cities and bases 
 
Rockatoon City    Location: 04:05S/134:43E"  
Nahertonshi       Location: 03:26S/133:24E" 
Port Manley       Location: 03:30S/135:12E"  
Margiseni         Location: 03:47S/135:32E"  
Nojimsan          Location: 07:13S/140:05E 
Schanjok          Location: 06:01S/140:42E  
Sentani           Location: 02:34S/140:31E  
Dalteria          Location: 03:08S/140:36E  
Avascir           Location: 02:54S/136:07E 
Bravida  Location: 03:04S/134:26E  
 
East Cyberland cities and bases 
 
Wewak             Location: 03:35S/143:40E 
Mount Hegan       Location: 05:50S/144:18E  
Tuljeti    Location: 07:27S/141:54E  
Locribla    Location: 03:52S/143:09E 
 
Fixed SAM Bases 
 Latitude Longitude Location 
1. "04:05S 134:42E"  Rockatoon City 
2. "04:15S 134:53E" 
3. "03:05S 135:42E"  Between Port Manley and Avascir 
4. "02:60S 136:12E"  Avascir 
5. "02:54S 136:91E"  Group 1 East of Aviscar 
6. "02:34S 139:31E"  Group 1 West of Sentini 
7. "02:79S 140:31E"  Between Sentini and Dalteria 
8. "06:01S 140:40E"  Schanjok 
9. "05:70S 137:76E"  Group 3 W of Schanjok 
 
Ground Radars 
 Latitude Longitude Location 
1. "04:06S 134:41E"  Rockatoon City 
2. "02:61S 136:12E"  Avascir 
3. "02:78S 140:32E"  Between Sentini and Dalteria  
4. "06:01S 140:42E"  Schanjok 
5. "05:72S 137:75E"  Group 3 W of Schanjok 
 
Mobile SAM Bases 
 Latitude Longitude Location 
1. "04:10S 134:29E"  Rockatoon City 
2. "03:99S 134:31E" 
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3. "04:13S 135:15E" 
4. "03:31S 135:18E"  Port Manley 
5. "03:41S 135:23E" 
6. "02:99S 135:31E"  Between Port Manley and Avascir 
7. "03:01S 135:28E" 
8. "02:94S 135:50E" 
9. "03:03S 135:51E" 
10. "02:53S 136:21E"  Avascir 
11. "02:62S 136:28E" 
12. "02:51S 136:18E" 
13. "02:49S 136:24E" 
14. "02:53S 136:90E"  Group 1 East of Avascir 
15. "02:55S 136:88E" 
16. "02:53S 136:92E" 
17. "02:00S 137:77E"  Group 2 East of Avascir 
18. "02:01S 137:79E"  
19. "02:64S 138:21E"  Group 3 East of Avascir 
20. "02:62S 138:20E" 
21. "02:60S 138:19E" 
22. "02:59S 138:20E" 
23. "02:35S 139:29E"  Group 1 West of Sentini 
24. "02:36S 139:29E" 
25. "02:34S 129:28E" 
26. "02:35S 129:28E" 
 
 
27. "02:80S 140:32E"  Between Sentini and Dalteria 
28. "02:81S 140:33E" 
29. "02:78S 140:33E" 
30. "05:99S 140:42E"  Schanjok 
31. "06:02S 140:40E" 
32. "05:98S 140:41E" 
32. "05:98S 140:42E" 
33. "05:97S 140:39E" 
34. "05:51S 140:31E"  Group 1 NW of Schanjok 
35. "05:50S 140:32E" 
36. "05:80S 140:25E"  Group 2 W of Schanjok 
37. "05:81S 140:23E" 
37. "05:79S 140:23E" 
38. "05:70S 137:75E"  Group 3 W of Schanjok 
39. "05:69S 137:76E" 
40. "05:68S 137:77E" 
41. "05:71S 137:74E" 
42. "03:55S 136:90E"  Group 2 E of Margiseni 
43. "03:56S 136:90E" 
44. "03:54S 136:89E" 
45. "03:45S 136:05E"  Group 1 E of Margiseni 
46. "03:44S 136:07E" 
47. "03:47S 136:03E" 
48. "03:50S 136:04E" 
49. "03:51S 136:04E" 
50. "03:52S 136:08E" 
 
 
Anti-Aircraft Guns 
 Latitude Longitude  Location 
1. "04:07S 134:33E"  Rockatoon City 
2. "04:11S 134:58E" 
3. "03:74S 134:51E" 
4. "04:13S 135:13E" 
5. "03:89S 135:14E" 
6. "03:41S 135:22E"  Port Manley 
7. "03:36S 135:10E" 
8. "03:02S 135:38E"  Between Port Manley and Avascir 
9. "03:09S 135:55E" 
10. "02:80S 136:20E"  Avascir 
11. "02:71S 136:23E" 
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12. "02:52S 136:89E"  Group 1 East of Avascir 
13. "02:55S 136:87E" 
14. "02:56S 136:92E" 
15. "02:56S 136:91E" 
16. "02:02S 137:76E"  Group 2 East of Avascir 
17. "01:99S 137:80E" 
18. "02:00S 137:81E" 
19. "02:61S 138:22E"  Group 3 East of Avascir 
20. "02:62S 138:20E" 
21. "02:59S 138:19E" 
22. "02:60S 138:22E" 
23. "02:36S 129:27E"  Group 1 West of Sentini 
24. "02:33S 129:28E" 
25. "02:34S 129:28E" 
26. "02:36S 129:23E" 
27. "02:79S 140:34E"  Between Sentini and Dalteria 
29. "02:80S 140:32E" 
30. "02:81S 140:29E" 
31. "02:82S 140:30E" 
32. "05:98S 140:39E"  Schanjok 
33. "05:97S 140:41E" 
34. "06:03S 140:42E" 
35. "06:00S 140:42E" 
36. "05:49S 140:31E"  Group 1 SW of Schanjok 
37. "05:52S 140:29E" 
38. "05:53S 140:28E" 
39. "05:81S 140:26E"  Group 2 W of Schanjok 
40. "05:82S 140:27E" 
41. "05:83S 140:24E" 
42. "05:71S 137:75E"  Group 3 W of Schanjok 
43. "05:69S 137:73E" 
44. "05:70S 137:73E" 
45. "03:55S 136:89E"  Group 2 E of Margiseni 
46. "03:53S 136:91E" 
47. "03:45S 136:05E"  Group 1 E of Margiseni 
48. "03:47S 136:03E" 
49. "03:41S 136:01E" 
50. "03:39S 136:07E" 
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Appendix C: Current Controller specifications 
 
This section contains documentation on the controllers used in each experiment.  It includes plant models, state 
and event definitions, low to high level language mappings, controller specifications, and controllers. 
 
Experiment C1 – Controller for a single wild weasel 
 
Level 1 – Design Controller for a Single Plane 
 

 
Figure C.1: Transition Diagram of FSM for Wild Weasel Plant Model 
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 Events           Physical Meaning    Controllable 
 a  attack the target     Yes 
 A  alarm, enemy attack unsuccessfully  No 
 b  partial damaged     No 
 C  mission completed    No 
 d  the aircraft is destroyed    No 
 D  destroy the target    No 
 e  escape      Yes 
 l  all targets destroyed/go back for repair(mission      
                        abort) 

Yes 

 s   search enemy   Yes 
 t  take off for a new mission   Yes 
  
 States  Physical Meaning  
 0q    Idle in air and safe (ready for mission)  

 1q    Searching for target  

 2q   Alarming that the fighter is being attacked  

 3q   Firing the missiles  

 4q   Damaged, can fly but cannot fight  

 5q    Get destroyed completely  

 6q   Mission completed/abort, back at base  

Table C-1.  States and Events for Wild Weasel Plant Model 
 
 

Wild Weasel Control Specifications 

1. Try to fulfill the mission (i.e., [engage the enemy targets]) unless more specific instructions are given 
from the requirements below. 

2. At the initial state, q0, start to [search for the next enemy target] if the mission is not completed. 

3. If the aircraft is in the [alarming] state and 4 consecutive [alarms] have been received, [escape]. 

4. If two consecutive [alarms] have been received, [fire]. 

5. If the aircraft is in the [attacking] state and the target has not been destroyed after executing [fire] four 
consecutive times, [escape]. 

6. If the aircraft becomes [damaged], it should [escape]. 

Table C.2: Controller Requirements for a Single Wild Weasel 
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Figure C.2: Controller for a Single Wild Weasel 

 
 
Level 2 – Verify Controller for a Single Plane 
  

Synthesis of a Control
Language

Step1: Generate the specifications, i.e., control objectives by hand
Step 2: Formulate the plant model mQqQG ,,,, 0δΣ= by hand
Step 3: Check accessibility of the plant model by code
Step 4: Convert the specifications in Step 1 to an FSM

mXxXS ,,,, 0αΣ=
by hand

Step 5: Ensure trimness of the marked language )(SLK m= by code
Ensure K is prefix-closed by code

by codeIf K is controllable
then the derived supervisor S is the controller
else generate a supremal controllable

sublanguage   and Z is the controller
end

Step 6: If Step 5 is not successful, repeat the process from Step 1

by code
SZ ⊂

 
Figure C.3: Steps for Testing Controllability 
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Experiment C2--Fixed Two-Level Controller Hierarchy for Wild Weasels and 
Experiment C3 – Dynamic Three-Level Controller Hierarchy for Wild Weasels 
 
 

Figure C.4:  Lower Level Plant Model for Hierarchical Control 
 
 
Events    Physical Meaning                        States      Physical Meaning  
a attack the target, i.e., fire  0q  Idle in air and safe (ready for  
                                                                         mission)  
A alarm, in the range of the target 1q   Searching for target 

b partial damaged 2q  Alarming that the aircraft is in danger  

C mission completed 3q  Firing the missile 

d destroyed 4q  Damaged, can fly but cannot fight   

D destroy the target 5q  Get destroyed   
                                                                         completely/unavailable  
e escape 6q  Mission completed/abort, back at   
                                                                         base  
E escort the partially damaged plane 7q  searching for partially  
                                                                                      damaged friend plane 
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L all targets destroyed/mission abort 8q  Escorting friend plane 

r replace the destroyed plane 

R reassign a new plane from the base 

s search target   

S search friend 

t take off from the base     

x transfer the plane to other group 
Table C.3: Lower Level Events and States for Hierarchical Control 

 
 

Lower Level Control Specifications (for the operation of individual aircraft): 

1.  Try to fulfill the mission(i.e., [engage the enemy targets]) if none of the following 
situations occurred; 

2.  At the initial state q0, start to [search for the next enemy target] if the mission is not completed 
except that the upper level controller asks for [searching for damaged friend aircraft] or [transferring 
to some other group]. In other words, the lower level controller should keep these three controllable 
transitions available: [search for the enemy target], [search for damaged friend aircraft], and [transfer 
to some other group]. It is upper level controller’s responsibility to tell the lower level controller 
when it should enable one among these three commands; 

3.  [Escape] if consecutive [alarms] from the enemy exceed 4 times since the first [alarm] was received; 
4.  [attack/fire] after two or more consecutive [alarm] signals; 
5. [Escape] if consecutive [attack/fire] to the target exceed 4 times since the first [attack/fire] was 

taken; 
6. The [(partially) damaged] aircraft should stop mission and [escape] if capable to do so, the upper 

level controller will assign friend aircraft to [escort] this damaged one; 
7. [Search for damaged friend aircraft] and [escort] to base if the upper level controller asks to do so; 
8. During [searching for damaged friend aircraft], ignore [alarm] signals; 
9.  During [escorting], if [alarm] comes in, then [attack/fire] the enemy only once and immediately 

come back and keep [escorting]; 
10.  [transfer to some other group] if the upper level controller asks to do so; 
11.  Keep [replace current unavailable(either transferred or destroyed) aircraft by some one from other 

group] and [reassign a new aircraft from the base] available in the lower level controller. The upper 
level controller will decide when to enable one of these two commands. 

Table C.4: Lower Level Control Specifications for Hierarchical Control 
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Figure C.5: Plant Model for Second Level of Hierarchical Control 

 
 
 
 
 
 
 

 Events     Physical Meaning                      Controllable       Associated low event 
 E engage T a, A, D, s 
 F search friend and escort T S, E 
 I disengage T c, e, L, t  
 K plane gets killed F d 
 P partially damaged F b 
 M replace the plane T r 
 R reassign a new plane T R 
 X transfer to other group T x 
 States        Physical Meaning          States aggregation of lower level plant  
 

0q′   disengaging   { }960 ,, qqq  
 

1q′   searching for friend and escort  { }3287 ,, qqq  
 

2q′  engaging  { }3110321 ~,,, qqqqq  
 

3q′  partially damaged { }4q  
 

4q′  destroyed/unavailable  { }5q  

Table C.5: Events, States, and Mappings for Levels 1 and 2 of Hierarchical Control 
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1.  If a plane dies [destroyed] and the other is in [disengaging] state, replace the dead one with a new one 

before the other [engage]; 

2.  If both are [engaging] and then one dies [destroyed], the other [disengages] and not engage until new 
replacing one joins. 

3.  If a plane is [partially damaged] it will be [escorted] back to base by its partner. 
4.  Reduce the loss as far as possible when fulfilling the mission. 

Table C.6: Second Level Control Specifications (for the operation of a group of aircraft) 
 

 
 

 

 
Figure C.6: Second Level Controller 
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Experiment C3 – Dynamic Three-Level Controller Hierarchy for Wild Weasels 

 
List of Events: Controllable = {A, E, G, I, R, X} Uncontrollable = {D, M} 
A: Mission Abort 
D: Aircraft Destroyed 
E: Engage 
G: Replace Group 
I: Idle 
M: Mission Complete 
R: Replace Dead Aircraft 
X: Transfer Aircraft 
List of States: Q = {q0, q1, q2, q3} 
Q0: Idle (Both aircraft alive) 
Q1: Engaging (Both aircraft alive) 
Q2: One Alive, One Dead 
Q3: Both Dead 

Table C.7: States and Events for Top Level Controller 

Figure C.7:  Top Level Plant for 3 Level Hierarchy 
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From  
State  

Up/  
Low Event  

To  
State  

From  
State  

Up/  
Low Event  

To 
State 

0  I/I or I/i  0  all states  D/K  4/9/14/19 
0  E/E  1  all states  D/k  20/21/22/23 
0  E/e  5  all states  X/X  4 or 9 or 14 or 19 
19  D/k  24  all states  X/x  20 or 21 or 22 or 23 
23  D/K  24  24  G/R  20 
4/9/14/19  R/R  0/5/10/15  24  G/r  4 
20/21/22/23  R/r  0/1/2/3  all states  M/C or M/c  

Table C.8: Mealy Machine Construction for Middle-Level Individual Group of Two Aircraft 
 
 

1.  Try to fulfill the mission; 
2.  Allow mission abort (When? tactical intelligence?); 
3.  If both groups have one dead and one alive, then form a new group; 
4.  If one group is dead, replace the group; 
5.  If only one aircraft is dead in a group, replace the dead aircraft with a new one that comes from either 

the base or another group. 
Table C.9: Third Level Specifications 

 

  
Figure C.8: Third Level Controller Diagram 

 


